Skip to main content
Log in

Pharmacokinetic-Pharmacodynamic Drug Interactions with HMG-CoA Reductase Inhibitors

  • Review Article
  • Drug Disposition
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

The HMG-CoA reductase inhibitors (statins) are effective in both the primary and secondary prevention of ischaemic heart disease. As a group, these drugs are well tolerated apart from two uncommon but potentially serious adverse effects: elevation of liver enzymes and skeletal muscle abnormalities, which range from benign myalgias to life-threatening rhabdomyolysis. Adverse effects with statins are frequently associated with drug interactions because of their long-term use in older patients who are likely to be exposed to polypharmacy. The recent withdrawal of cerivastatin as a result of deaths from rhabdomyolysis illustrates the clinical importance of such interactions.

Drug interactions involving the statins may have either a pharmacodynamic or pharmacokinetic basis, or both. As these drugs are highly extracted by the liver, displacement interactions are of limited importance. The cytochrome P450 (CYP) enzyme system plays an important part in the metabolism of the statins, leading to clinically relevant interactions with other agents, particularly cyclosporin, erythromycin, itraconazole, ketoconazole and HIV protease inhibitors, that are also metabolised by this enzyme system. An additional complicating feature is that individual statins are metabolised to differing degrees, in some cases producing active metabolites. The CYP3A family metabolises lovastatin, simvastatin, atorvastatin and cerivastatin, whereas CYP2C9 metabolises fluvastatin. Cerivastatin is also metabolised by CYP2C8. Pravastatin is not significantly metabolised by the CYP system. In addition, the statins are substrates for P-glycoprotein, a drug transporter present in the small intestine that may influence their oral bioavailability. In clinical practice, the risk of a serious interaction causing myopathy is enhanced when statin metabolism is markedly inhibited. Thus, rhabdomyolysis has occurred following the coadministration of cyclosporin, a potent CYP3A4 and P-glycoprotein inhibitor, and lovastatin. Itraconazole has been shown to increase exposure to simvastatin and its active metabolite by at least 10-fold.

Pharmacodynamically, there is an increased risk of myopathy when statins are coprescribed with fibrates or nicotinic acid. This occurs relatively infrequently, but is particularly associated with the combination of cerivastatin and gemfibrozil. Statins may also alter the concentrations of other drugs, such as warfarin or digoxin, leading to alterations in effect or a requirement for clinical monitoring.

Knowledge of the pharmacokinetic properties of the statins should allow the avoidance of the majority of drug interactions. If concurrent therapy with known inhibitors of statin metabolism is necessary, the patient should be monitored for signs and symptoms of myopathy or rhabdomyolysis and the statin should be discontinued if necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Table I
Table II
Fig. 2
Table III
Table IV
Table V
Table VI

Similar content being viewed by others

References

  1. Johnson J, Bootman J. Drug-related morbidity and mortality: a cost of illness model. Arch Intern Med 1995; 155: 1949–56

    Article  PubMed  CAS  Google Scholar 

  2. Philips D, Christenfeld N, Glynn L. Increase in US medicationerror deaths between 1983 and 1993. Lancet 1998; 351: 643–4

    Article  Google Scholar 

  3. Berwick D. Reducing errors in medicine. BMJ 1999; 319: 136–7

    Article  PubMed  CAS  Google Scholar 

  4. Classen D, Pestonik S, Evans S, et al. Adverse drug events in hospitalised patients. Excess length of stay, extra costs, and attributable mortality. JAMA 1997; 227: 301–6

    Article  Google Scholar 

  5. Bates DW, Spell N, Cullen D, et al. The costs of adverse drug events in hospitalised patients. JAMA 1997; 277: 307–11

    Article  PubMed  CAS  Google Scholar 

  6. European Agency for the Evaluation of Medicinal Products (EMEA). CPMP note for guidance on the investigation of drug interactions: CPMP/EWP/560/95, 1998

  7. Brodie M, Feely J. Adverse drug interactions. In: Feely J, editor. New Drugs. London: BMJ, 1994: 41–55

    Google Scholar 

  8. Nies A. Principles of therapeutics. In: Goodman Gilman A, Rail T, Nies A, et al., editors. Goodman & Gillman’s the pharmacological basis of therapeutics. New York: McGraw Hill, 1991: 62–83

    Google Scholar 

  9. Herman R. Drug interactions and the statins. CMAJ 1999; 161: 1281–6

    PubMed  CAS  Google Scholar 

  10. Moghadasian M. Clinical pharmacology of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors. Life Sci 1999; 65: 1329–37

    Article  PubMed  CAS  Google Scholar 

  11. Stein EA. Extending therapy options in treating lipid disorders: a clinical review of cerivastatin, a novel HMG-CoA reductase inhibitor. Drugs 1998; 56 Suppl. 1: 25–31

    Article  PubMed  CAS  Google Scholar 

  12. Scandinavian Simvastatin Survival Study Group. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival study (4S). Lancet 1994; 344: 1383–9

    Google Scholar 

  13. Downs JR, Clearfield M, Weis S, et al. Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: results of AFCAPSA/TexCAPS. Air Force/Texas Coronary Atherosclerosis Prevention Study. JAMA 1998; 279: 1615–22

    Article  PubMed  CAS  Google Scholar 

  14. Herd A, Ballantyne C, Farmer J, et al. Effects of fluvastatin on coronary atherosclerosis in patients with mild to moderate cholesterol elevations (Lipoprotein and Coronary Atherosclerosis Study [LCAS]). Am J Cardiol 1997; 80: 278–86

    Article  PubMed  CAS  Google Scholar 

  15. Long-term Intervention with Pravastatin Ischaemic Disease (LIPID) study group. Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. N Engl J Med 1998; 339: 1349–57

    Article  Google Scholar 

  16. Sacks F, Pfeffer M, Moye L, et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. N Engl J Med 1996; 335: 1001–9

    Article  PubMed  CAS  Google Scholar 

  17. Shephard J, Cobbe S, Ford I, et al. Prevention of coronary heart disease with pravastatin in men with hpercholesterolaemia. N Engl J Med 1995; 333: 1301–7

    Article  Google Scholar 

  18. Grundy SM, Cleeman JI, Rifkind BM, et al. Cholesterol lowering in the elderly population. Coordinating Committee of the National Cholesterol Education Program. Arch Intern Med 1999; 159: 1670–8

    Article  PubMed  CAS  Google Scholar 

  19. Simes J. Long-term effectiveness and safety of pravastatin in 9014 patients with coronary heart disease and average cholestoral concentrations: the LIPID trial follow-up. Lancet 2002; 359: 1379–87

    Article  Google Scholar 

  20. Hebert PR, Gaziano JM, Chan KS, et al. Cholesterol lowering with statin drugs, risk of stroke, and total mortality. An overview of randomized trials. JAMA 1997; 278: 313–21

    Article  PubMed  CAS  Google Scholar 

  21. Kmietowitz Z. Statins are the new aspirin, Oxford Researchers say [abstract]. BMJ 2001; 323: 1145

    Article  Google Scholar 

  22. Wood D, De Backer G, Faergeman O, et al. Prevention of coronary heart disease in clinical practice: recommendations of the Second Joint Task Force of European and Other Societies on Coronary Prevention. Atherosclerosis 1998; 140: 199–270

    Article  PubMed  CAS  Google Scholar 

  23. Miettinen T, Pyorala K, Olsson A, et al. Cholesterol-lowering therapy in women and elderly patients with myocardial infarction or angina pectoris. Findings from the Scandinavian Simvastatin Survival Study (4S). Circulation 1997; 96: 4211–8

    Article  PubMed  CAS  Google Scholar 

  24. Wallis E, Ramsay L, Ilaq I, et al. Coronary and cardiovascular risk estimation for primary prevention: validation of a new Sheffield table in the 1995 Scottish health survey population. BMJ 2000; 320: 671–6

    Article  PubMed  CAS  Google Scholar 

  25. Jackson R. Updated New Zealand cardiovascular disease risk-benefit prediction guide. BMJ 2000; 320: 709

    Article  PubMed  CAS  Google Scholar 

  26. Feely J, McGettigan P, Kelly A. Growth in use of statins after trials is not targeted to most appropriate patients. Clin Pharmacol Ther 2000; 67: 438–41

    Article  PubMed  CAS  Google Scholar 

  27. Crouse J, Byington R, Bond M, et al. Pravastatin, Lipids, and Atherosclerosis in the Carotid Arteries (PLAC-II). Am J Cardiol 1995; 75: 455–9

    Article  PubMed  Google Scholar 

  28. Arntz H-R. Evidence for the benefit of early intervention with pravastatin for secondary prevention of cardiovascular events. Atherosclerosis 1999; 147: S17–21

    Article  PubMed  CAS  Google Scholar 

  29. Charatan F. US spending on prescription drugs rose by 19% in 2000 [abstract]. BMJ 2001; 322: 1198

    Article  Google Scholar 

  30. Pedersen T, Kjekshus J, Berg K, et al. Cholesterol lowering and the use of healthcare resources. Circulation 1996; 93: 1796–802

    Article  PubMed  CAS  Google Scholar 

  31. Goa K, Barradell L, McTavish D. Simvastatin: a reappraisal of its cost effectiveness in dyslipidaemia and coronary heart disease. Pharmacoeconomics 1997; 11: 89–110

    Article  PubMed  CAS  Google Scholar 

  32. Pharoah P, Hollingworth W. Cost effectiveness of lowering cholesterol concentration with statins in patients with and without pre-existing coronary heart disease: life table method applied to health authority population. BMJ 1996; 312: 1443–6

    Article  PubMed  CAS  Google Scholar 

  33. Blum C. Comparison of properties of four inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Am J Cardiol 1994; 73: D3–11

    Article  Google Scholar 

  34. Tobert J. Efficacy and long term adverse effect pattern of lovastatin. Am J Cardiol 1988; 62: J28–34

    Article  Google Scholar 

  35. Farmer J, Gotto A. Choosing the right lipid-regulating agent. Drugs 1996; 52: 649–61

    Article  PubMed  CAS  Google Scholar 

  36. Dujovne C, Chremos A, Pool J, et al. Expanded clinical evaluation of lovastatin (EXCEL) study results. IV. Additional perspectives on the tolerability of lovastatin. Am J Med 1991; 91 Suppl. 1B: S25–30

    Article  Google Scholar 

  37. Lea A, McTavish D. Atorvastatin: a review of its pharmacology and therapeutic potential in the management of hyperlipidaemias. Drugs 1997; 53: 828–47

    Article  PubMed  CAS  Google Scholar 

  38. Maron D, Fazio S, Linton M. Current perspectives on statins. Circulation 2000; 101: 207–13

    Article  PubMed  CAS  Google Scholar 

  39. Bermingham RP, Whitsitt TB, Smart ML, et al. Rhabdomyolysis in a patient receiving the combination of cerivastatin and gemfibrozil. Am J Health Syst Pharm 2000; 57: 461–4

    PubMed  CAS  Google Scholar 

  40. Charatan F. Bayer decides to withdraw cholesterol lowering drug. BMJ 2001; 323: 359

    Article  Google Scholar 

  41. Grundy S. HMG-CoA reductase inhibitors for the treatment of hypercholesterolaemia. N Engl J Med 1988; 319: 24–33

    Article  PubMed  CAS  Google Scholar 

  42. Pederson T, Berg K, Cook T, et al. Safety and tolerability of cholesterol lowering with simvastatin during 5 years in the Scandinavian Simvastatin Survival Study. Arch Intern Med 1996; 156: 2085–92

    Article  Google Scholar 

  43. Maltz H, Balog D, Cheigh J. Rhabdomyolysis associated with concomitant use of atorvastatin and cyclosporin. Ann Pharmacother 1999; 33: 1176–9

    Article  PubMed  CAS  Google Scholar 

  44. Bliznakov E, Wilkins D. Biochemical and clinical consequences of inhibiting coenzyme Q10 biosynthesis by lipid-lowering HMG-CoA reductase inhibitors (statins): a critical overview. Adv Ther 1998; 15: 218–28

    CAS  Google Scholar 

  45. Ucar M, Mjorndal T, Dahlquivist R. HMG-CoA reductase inhibitors and myotoxicity. Drug Saf 2000; 6: 441–57

    Article  Google Scholar 

  46. Anonymous. Summary of the second report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. JAMA 1993; 269: 3015–123

  47. Desager J, Horsmans Y. Clinical pharmacokinetics of 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors. Clin Pharmacokinet 1996; 31: 348–71

    Article  PubMed  CAS  Google Scholar 

  48. Lennernas H, Fager G. Pharmacodynamics and pharmacokinetics of the HMG-CoA reductase inhibitors — similarities and differences. Clin Pharmacokinet 1997; 32: 403–25

    Article  PubMed  CAS  Google Scholar 

  49. Bottorff M, Yenkowsky J, Cave D. Use of diagnostic cluster methodology for therapeutic costing and drug surveillance of HMG-CoA reductase-inhibitor therapy. Clin Ther 1999; 21: 218–35

    Article  PubMed  CAS  Google Scholar 

  50. Colley C, Lucas L. Polypharmacy: the cure becomes the disease. J Gen Intern Med 1993; 8: 278–83

    Article  PubMed  CAS  Google Scholar 

  51. Stewart R, Cluff L. A review of medication errors and compliance in ambulant patients. Clin Pharmacol Ther 1972; 13: 463–8

    PubMed  CAS  Google Scholar 

  52. Bergman U, Wiholm B. Drug-related problems causing admission to a medical clinic. Eur J Clin Pharmacol 1981; 20: 193–200

    Article  PubMed  CAS  Google Scholar 

  53. Borortoff M. ‘Fire and forget’ — pharmacological considerations in coronary care. Atherosclerosis 1999; 147: S23–30

    Article  Google Scholar 

  54. Bays H, Dujovne C. Drug interactions of lipid-altering drugs. Drug Saf 1998; 5: 355–71

    Article  Google Scholar 

  55. Stern R, Yang B-B, Horton M, et al. Renal dysfunction does not alter the pharmacokinetics or LDL-cholesterol reduction of atorvastatin. J Clin Pharmacol 1997; 37: 816–9

    PubMed  CAS  Google Scholar 

  56. Duggan D, Vickers S. Physiological disposition of HMG-CoA-reductase inhibitors. Drug Metab Rev 1990; 22: 333–62

    Article  PubMed  CAS  Google Scholar 

  57. Mevacor (lovastatin): summary of product characteristics. New Jersey (NY): Merck Sharpe & Dohme Limited, 2000

  58. Duggan D, Chen I, Bayne W, et al. The physiological disposition of lovastatin. Drug Metab Dispos 1989; 17: 166–73

    PubMed  CAS  Google Scholar 

  59. Quion J, Jones P. Clinical pharmacokinetics of pravastatin. Clin Pharmacokinet 1994; 27: 94–103

    Article  PubMed  CAS  Google Scholar 

  60. Hsiang B, Zhu Y, Wang Z, et al. A novel human hepatic organic anion transporting polypeptide (OATP2). Identification of a liver-specific human organic anion transporting polypeptide and identification of rat and human hydroxymethylglutaryl-CoAreductase inhibitor transporters. J Biol Chem 1999; 274: 37161–8

    Article  PubMed  CAS  Google Scholar 

  61. Singhvi S, Pan H, Morrison R, et al. Disposition of pravastatin sodium, a tissue-selective HMG-CoA reductase inhibitor, in healthy subjects. Br J Clin Pharmacol 1990; 29: 239–43

    Article  PubMed  CAS  Google Scholar 

  62. Lipostat (pravastatin): summary of product characteristics. Dublin, Ireland: Bristol-Myers Squibb Limited, 2000

  63. Halstenson C, Triscari J, DeVault A, et al. Single-dose pharmacokinetics of pravastatin and metabolites in patients with renal impairment. J Clin Pharmacol 1992; 32: 124–32

    PubMed  CAS  Google Scholar 

  64. Haria M, McTavish D. Pravastatin: a reappraisal of its pharmacological properties and clinical effectiveness in the management of coronary heart disease. Drugs 1997; 53: 299–336

    Article  PubMed  CAS  Google Scholar 

  65. Tsujita Y, Kuroda M, Shimada Y, et al. CS-514, a competitive inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase: tissue-selective inhibition of sterol synthesis and hypolipidaemic effects on various animal species. Biochim Biophys Acta 1986; 877: 50–60

    Article  PubMed  CAS  Google Scholar 

  66. Amorosa L, Rozovski S, Ananthakrishnan R, et al. Effects of pravastatin on cholesterol metabolism in Watanabe heritable hyperlipidaemic rabbits. Jpn Heart J 1992; 33: 451–63

    Article  PubMed  CAS  Google Scholar 

  67. Koga T, Shimada Y, Kuroda M. Tissue-selective inhibition of cholesterol synthesis in vivo by pravastatin sodium, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor. Biochim Biophys Acta 1990; 1045: 115–20

    Article  PubMed  CAS  Google Scholar 

  68. Joshi H, Fakes M, Serajuddin A. Differentiation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors by their relative lipophilicity. Pharm Pharmacol Commun 1999; 5: 269–71

    Article  CAS  Google Scholar 

  69. Todd P, Goa K. Simvastatin: a review of its pharmacological properties and potential in hypercholesterolaemia. Drugs 1990; 40: 583–607

    Article  PubMed  CAS  Google Scholar 

  70. Vickers S, Duncan C, Chen I, et al. Metabolic disposition studies on simvastatin, a cholesterol-lowering prodrug. Drug Metab Dispos 1990; 18: 138–45

    PubMed  CAS  Google Scholar 

  71. Muck W, Ritter W, Ochmann K, et al. Absolute and relative bioavailability of the HMG-CoA reductase inhibitor cerivastatin. Int J Clin Pharmacol Ther 1997; 35: 255–60

    PubMed  CAS  Google Scholar 

  72. Mazzu A, Lettieri J, Heller A, et al. Ascending multiple dose safety, tolerability and pharmacokinetics of rivastatin in humans [abstract]. Clin Pharmacol Ther 1993; 53: 230

    Google Scholar 

  73. Muck W, Ochmann K, Rohde G, et al. Influence of erythromycin pre- and co-treatment on the single-dose pharmacokinetics of cerivastatin. Eur J Clin Pharmacol 1998; 53: 469–73

    Article  PubMed  CAS  Google Scholar 

  74. Muck W. Rational assessment of the interaction profile of cerivastatin supports its low propensity for drug interactions. Drugs 1998; 56 Suppl. 1: 15–23

    Article  PubMed  CAS  Google Scholar 

  75. Bischoff H, Heller A. Preclinical and clinical pharmacology of cerivastatin. Am J Cardiol 1998; 82: J18–25

    Article  Google Scholar 

  76. Chong P, Seeger J. Atorvastatin calcium: an addition to HMG-CoA reductase inhibitors. Pharmacotherapy 1997; 17: 1157–77

    PubMed  CAS  Google Scholar 

  77. Langtry H, Markham A. Fluvastatin: a review of its use in lipid disorders. Drugs 1999; 57: 583–606

    Article  PubMed  CAS  Google Scholar 

  78. Tse F, Jaffe J, Troendle A. Pharmacokinetics of fluvastatin after single and multiple doses in normal volunteers. J Clin Pharmacol 1992; 32: 630–8

    PubMed  CAS  Google Scholar 

  79. Fischer V, Johanson L, Heitz F, et al. The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor fluvastatin: effect on human cytochrome P-450 and implications for metabolic drug interactions. Drug Metab Dispos 1999; 27: 410–6

    PubMed  CAS  Google Scholar 

  80. Zocor (simvastatin): summary of product characteristics. Dublin, Ireland: Merck Sharpe & Dohme Limited, 2000

  81. Lescol (fluvastatin): summary of product characteristics. Dublin, Ireland: Novartis Limited, 2000

  82. Lipitor (atorvastatin): summary of product characteristics. Dublin, Ireland: Parke-Davis, 2000

  83. Lipobay (cerivastatin): summary of product characteristics. Dublin, Ireland: Bayer Limited, 2000

  84. Boyd RA, Stern RH, Stewart BH, et al. Atorvastatin coadministration may increase digoxin concentrations by inhibition of intestinal P-glycoprotein-mediated secretion. J Clin Pharmacol 2000; 40: 91–8

    Article  PubMed  CAS  Google Scholar 

  85. Wacher V, Wu C, Benet L. Overlapping substrate specificities and tissue distribution of cytochrome P450 3A and P-glycoprotein: implications for drug delivery and activity in cancer chemotherapy. Mol Carcinog 1995; 13: 129–34

    Article  PubMed  CAS  Google Scholar 

  86. Kim RB, Wandel C, Leake B, et al. Interrelationship between substrates and inhibitors of human CYP3A and P-glycoprotein. Pharm Res 1999; 16: 408–14

    Article  PubMed  CAS  Google Scholar 

  87. Christians U, Jacobsen W, Floren L. Metabolism and drug interactions of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors in transplant patients: are the statins mechanistically similar? Pharmacol Ther 1998; 80: 1–34

    Article  PubMed  CAS  Google Scholar 

  88. Alsenz J, Steffen H, Alex R. Active apical secretory efflux of the HIV protease inhibitors saquinavir and ritonavir in Caco-2 cell monolayers. Pharm Res 1998; 15: 423–8

    Article  PubMed  CAS  Google Scholar 

  89. Fromm MF, Kim RB, Stein CM, et al. Inhibition of P-glycoproteinmediated drug transport a unifying mechanism to explain the interaction between digoxin and quinidine. Circulation 1999; 99: 552–7

    Article  PubMed  CAS  Google Scholar 

  90. Bogman K, Peyer A-K, Torok M, et al. HMG-CoA reductase inhibitors and P-glycoprotein modulation. Br J Pharmacol 2001; 132: 1183–92

    Article  PubMed  CAS  Google Scholar 

  91. Richter W, Jacob B, Schwandt P. Interaction between fibre and lovastatin [letter]. Lancet 1991; 338: 706

    Article  PubMed  CAS  Google Scholar 

  92. Pan H, De Vault A, Swites B. Pharmacokinetics and pharmacodynamics of pravastatin alone and with cholestyramine in hypercholesterolaemia. Clin Pharmacol Ther 1990; 48: 201–7

    Article  PubMed  CAS  Google Scholar 

  93. Nakai A, Nishikata M, Matsuyama K, et al. Drug interaction between simvastatin and cholestyramine in vitro and in vivo. Biol Pharm Bull 2000; 19: 1231–3

    Article  Google Scholar 

  94. Smith H, Jokubaitis L, Troendle A, et al. Pharmacokinetics of fluvastatin and specific drug interactions. Am J Hypertens 1993; 6: 375S–82S

    PubMed  CAS  Google Scholar 

  95. Muck W, Ritter W, Frey R, et al. Influence of cholestyramine on the pharmacokinetics of cerivastatin. Int J Clin Pharmacol Ther 1997; 35: 250–4

    PubMed  CAS  Google Scholar 

  96. Pan H, DeVault A, Brescia D, et al. Effect of food on pravastatin pharmacokinetics and pharmacodynamics. Int J Clin Pharmacol Ther Toxicol 1993; 31: 291–4

    PubMed  CAS  Google Scholar 

  97. Deslypere J. Clinical implications of the biopharmaceutical properties of fluvastatin. Am J Cardiol 1994; 73: D12–7

    Article  Google Scholar 

  98. Mazzu A, Lettieri J, Heller A. Pharmacokinetics of cerivastatin administration with and without food in the morning and evening [abstract]. Atherosclerosis 1997; 130: S29

    Google Scholar 

  99. Radulovic L, Cilla D, Posvar E, et al. Effect of food on the bioavailability of atorvastatin, an HMG-CoAreductase inhibitor. J Clin Pharmacol 1995; 35: 990–4

    PubMed  CAS  Google Scholar 

  100. Plosker G, Wagstaff A. Fluvastatin. A review of its pharmacology and use in the management of hypercholesterolaemia. Drugs 1996; 51: 433–59

    Article  PubMed  CAS  Google Scholar 

  101. Baily D, Arnold J, Munoz C, et al. Grapefruit-felodipine interaction: mechanism, predictability, and effect of naringin. Clin Pharmacol Ther 1993; 53: 637–42

    Article  Google Scholar 

  102. Ducharme M, Provenazo R, Dehoorne-Smith M. Trough concentrations of cyclosporin in blood following administration with grapefruit juice. Br J Clin Pharmacol 1993; 36: 457–9

    Article  PubMed  CAS  Google Scholar 

  103. Kupferschmidt H, Ha H, Zeigler W, et al. Interaction between grapefruit juice and midazolam in humans. Clin Pharmacol Ther 1995; 58: 383–8

    Article  Google Scholar 

  104. Benton R, Honig P, Zamani K, et al. Grapefruit juice alters terfenadine pharmacokinetics, resulting in prolongation of repolarisation on the electrocardiogram. Clin Pharmacol Ther 1996; 59: 383–8

    Article  PubMed  CAS  Google Scholar 

  105. Ameer B, Weintraub R. Drug interactions with grapefruit juice. Clin Pharmacokinet 1997; 33: 103–21

    Article  PubMed  CAS  Google Scholar 

  106. Lilja J, Kivisto K, Neuvonen P. Grapefruit juice-simvastatin interaction: effect on serum concentrations of simvastatin, simvastatin acid, and HMG-CoA reductase inhibitors. Clin Pharmacol Ther 1998; 64: 477–83

    Article  PubMed  CAS  Google Scholar 

  107. Lilja J, Kivisto K, Neuvonen P. Grapefruit juice increases serum concentrations of atorvastatin and has no effect on pravastatin. Clin Pharmacol Ther 1999; 66: 118–27

    PubMed  CAS  Google Scholar 

  108. Kantola T, Kivisto K, Neuvonen P. Grapefruit juice greatly increases serum concentrations of lovastatin and lovastatin acid. Clin Pharmacol Ther 1998; 63: 397–402

    Article  PubMed  CAS  Google Scholar 

  109. Neuvonen P, Kantola T, Kivisto K. Simvastatin but not pravastatin is very susceptible to interaction with the CYP3A4 inhibitor itraconazole. Clin Pharmacol Ther 1998; 63: 332–41

    Article  PubMed  CAS  Google Scholar 

  110. Kantola T, Kivisto K, Neuvonen P. Effect of itraconazole on the pharmacokinetics of atorvastatin. Clin Pharmacol Ther 1998; 64: 58–65

    Article  PubMed  CAS  Google Scholar 

  111. Neuvonen P, Jalava K. Itraconazole drastically increases plasma concentrations of lovastatin and lovastatin acid. Clin Pharmacol Ther 1996; 60: 54–61

    Article  PubMed  CAS  Google Scholar 

  112. Rogers J, Zhao J, Liu L, et al. Grapefruit juice has minimal effects on plasma concentrations of lovastatin-derived 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors. Clin Pharmacol Ther 1999; 66: 358–66

    Article  PubMed  CAS  Google Scholar 

  113. Lees R, Lees A. Rhabdomyolysis from the coadministration of lovastatin and the antifungal agent itraconazole [letter]. N Engl J Med 1995; 333: 664–5

    Article  PubMed  CAS  Google Scholar 

  114. Norman D, Ilingworth D, Unson J, et al. Myolysis and acute renal failure in a heart-transplant recipient receiving lovastatin [letter]. N Engl J Med 1988; 318: 46–7

    Article  PubMed  CAS  Google Scholar 

  115. Feely J, O’Connor P. Effects of HMG CoA reductase inhibitors on warfarin binding. Drug Investigation 1991; 3: 315–6

    Google Scholar 

  116. Akhlaghi F, McLachlan A, Keogh A, et al. Effect of simvastatin on cyclosporin unbound fraction and apparent blood clearance in heart transplant recipients. Br J Clin Pharmacol 1997; 44: 537–42

    Article  PubMed  CAS  Google Scholar 

  117. Azie N, Brater D, Becker P, et al. The interaction of diltiazem with lovastatin and pravastatin. Clin Pharmacol Ther 1998; 64: 369–77

    Article  PubMed  CAS  Google Scholar 

  118. Kivisto K, Kantola T, Neuvonen P. Different effects of itraconazole on the pharmacokinetics of fluvastatin and lovastatin. Br J Clin Pharmacol 1998; 46: 49–53

    Article  PubMed  CAS  Google Scholar 

  119. Horsmans Y. Differential metabolism of statins: importance of drug-drug interactions. Eur Heart J 1999; 1 Suppl. T: 7–12

    Google Scholar 

  120. Bottorff M, Hansten P. Long-term safety of hepatic hydroxymethyl glutaryl coenzyme A reductase inhibitors — the role of metabolism: monograph for physicians [review]. Arch Intern Med 2000; 160: 2273–80

    Article  PubMed  CAS  Google Scholar 

  121. Nakagawa K, Ishizaki T. Therapeutic relevance of pharmacogenetic factors in cardiovascular medicine. Pharmacol Ther 2000; 86: 1–28

    Article  PubMed  CAS  Google Scholar 

  122. Dressier G, Spence D, Bailey D. Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition. Clin Pharmacokinet 2000; 38: 41–57

    Article  Google Scholar 

  123. Transon C, Leeman T, Dayer P. In vitro comparative inhibition profiles of major human drug metabolising cytochrome P450 isoenzymes (CYP2C9, CYP2D6 and CYP3A4) by HMG-CoA reductase inhibitors. Eur J Clin Pharmacol 1996; 50: 209–15

    Article  PubMed  CAS  Google Scholar 

  124. Bertz R, Granneman G. Use of in vitro and in vivo data to estimate the likelihood of metabolic pharmacokinetic interactions. Clin Pharmacokinet 1997; 32: 210–58

    Article  PubMed  CAS  Google Scholar 

  125. Jacobson W, Kirchner G, Allensleben K, et al. Comparison of cytochrome P-450-dependent metabolism and drug interactions of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors lovastatin and pravastatin in the liver. Drug Metab Dispos 1999; 27: 173–9

    Google Scholar 

  126. Vyas K, Kari P, Wang R, et al. Biotransformation of lovastatin. III. Effect of cimetidine and famotidine on in-vitro metabolism of lovastatin by rat and human liver microsomes. Biochem Pharmacol 1990; 39: 67–73

    Article  PubMed  CAS  Google Scholar 

  127. Wang R, Kari P, Lu A, et al. Biotransformation of lovastatin. IV. Identification of cytochrome P450 3A proteins as the major enzymes responsible for the oxidative metabolism of lovastatin in rat and human liver microsomes. Arch Biochem Biophys 1991; 290: 355–61

    Article  PubMed  CAS  Google Scholar 

  128. East C, Alivizatos P, Grundy S, et al. Rhabdomyolysis in patients receiving lovastatin after cardiac transplantation [letter]. N Engl J Med 1988; 318: 47–8

    Article  PubMed  CAS  Google Scholar 

  129. Gullestad L, Nordal K, Berg K, et al. Interaction between lovastatin and cyclosporin A after heart and kidney transplantation. Transplant Proc 1999; 31: 2163–5

    Article  PubMed  CAS  Google Scholar 

  130. Tobert J. Rhabdomyolysis in patients receiving lovastatin after cardiac transplantation [letter]. N Engl J Med 1988; 318: 48

    Article  Google Scholar 

  131. Olbrict C, Wanner C, Eisenhauer T, et al. Accumulation of lovastatin, but not pravastatin, in the blood of cyclosporin-treated kidney graft patients after multiple doses. Clin Pharmacol Ther 1997; 62: 311–21

    Article  Google Scholar 

  132. Kobashigawa J, Murphy F, Stevenson L, et al. Low-dose lovastatin safely lowers cholesterol after cardiac transplantation. Circulation 1990; 82: 281–3

    Google Scholar 

  133. Traindl O, Reading S, Franz M, et al. Low-dose lovastatin in hyperlipidemic kidney graft recipients with cyclosporine A. Transplant Proc 1992; 24: 2745–7

    PubMed  CAS  Google Scholar 

  134. Kandus A, Kovac D, Koselj M, et al. Lovastatin treatment of hyperlipidemia in kidney transplant recipients on cyclosporine immunosuppression. Transplant Proc 1994; 26: 2642–3

    PubMed  CAS  Google Scholar 

  135. Grunden J, Fisher K. Lovastatin-induced rhabdomyolysis possibly associated with clarithromycin and azithromycin. Ann Pharmacother 1997; 31: 859–63

    PubMed  CAS  Google Scholar 

  136. Ayanian J, Fuchs C, Stone R. Lovastatin and rhabdomyolysis [letter]. Ann Intern Med 1988; 109: 682–3

    PubMed  CAS  Google Scholar 

  137. Horn M. Coadministration of itraconazole with hypolipidaemic agents may induce rhabdomyolysis in healthy individuals [letter]. Arch Dermatol 1996; 132: 1254

    Article  PubMed  CAS  Google Scholar 

  138. Prueksaritanont T, Bennett M, Tang C, et al. Metabolic interactions between mibefradil and HMG-CoA reductase inhibitors: an in vitro investigation with human liver preparations. Br J Clin Pharmacol 1999; 47: 291–8

    Article  PubMed  CAS  Google Scholar 

  139. Wallace C, Mueller B. Lovastatin-induced rhabdomyolysis in the absence of concomitant drugs. Ann Pharmacother 1992; 26: 190–2

    PubMed  CAS  Google Scholar 

  140. Regazzi M, Iacona I, Campana C, et al. Altered disposition of pravastatin following concomitant drug therapy with cyclosporin A in transplant recipients. Transplant Proc 1993; 25: 2732–4

    PubMed  CAS  Google Scholar 

  141. Yoshimura N, Oka T, Okamoto M, et al. The effects of pravastatin on hyperlipidaemia in renal transplant recipients. Transplantation 1992; 53: 94–9

    Article  PubMed  CAS  Google Scholar 

  142. Becquemont L, Func-Brentano C, Jaillon P. Mibefradil, a potent CYP3A inhibitor, does not alter pravastatin pharmacokinetics. Fundam Clin Pharmacol 1999; 13: 232–6

    Article  PubMed  CAS  Google Scholar 

  143. Pan H, Triscan J, De Vault A, et al. Pharmacokinetic interaction between propranolol and the HMG-CoA reductase inhibitors pravastatin and lovastatin. Br J Clin Pharmacol 1991; 31: 655–70

    Article  Google Scholar 

  144. Oo C, Akbari B, Lee S, et al. Effect of orlistat, a novel anti-obesity agent, on the pharmacokinetics and pharmacodynamics of pravastatin in patients with mild hypercholesterolaemia. Clin Drug Invest 1999; 17: 217–33

    Article  CAS  Google Scholar 

  145. Alderman C. Possible interaction between nefazodone and pravastatin [abstract]. Ann Pharmacother 1999; 33: 871

    Article  PubMed  CAS  Google Scholar 

  146. Bottorff M. Comment: possible interaction between nefazodone and pravastatin [letter]. Ann Pharmacother 2000; 34: 538–9

    Article  Google Scholar 

  147. Arnadottir M, Eriksson L, Thysell H, et al. Plasma concentration profiles of simvastatin 3-hydroxy-3 methylglutaryl-co-enzyme A reductase inhibitory activity in kidney transplant recipients with and without ciclosporin. Nephron 1993; 65: 410–3

    Article  PubMed  CAS  Google Scholar 

  148. Weise W, Possidente C. Fatal rhabdomyolysis associated with simvastatin in a renal transplant patient. Am J Med 2000; 108: 152–351

    Article  Google Scholar 

  149. Kantola T, Rivisto K, Neuvonen P. Erythromycin and verapamil considerably increase serum simvastatin and simvastatin acid concentrations. Clin Pharmacol Ther 1998; 64: 177–82

    Article  PubMed  CAS  Google Scholar 

  150. Yeo K, Yeo W, Wallis EJ, et al. Enhanced cholesterol reduction by simvastatin in diltiazem-treated patients. Br J Clin Pharmacol 1999; 48: 610–5

    PubMed  CAS  Google Scholar 

  151. Mousa O, Brater DC, Sunblad KJ, et al. The interaction of diltiazem with simvastatin. Clin Pharmacol Ther 2000; 67: 267–74

    Article  PubMed  CAS  Google Scholar 

  152. Neuvonen P, Kantola T, Kivisto K. Calcium channel blocker-simvastatin interaction. Reply [letter]. Clin Pharmacol Ther 1999; 65: 583–5

    Article  CAS  Google Scholar 

  153. Schmassmann-Suhijar D, Bullingham R, Grasser R, et al. Rhabdomyolysis due to interaction of simvastatin with mibefradil. Lancet 1998; 351: 1929–30

    Article  PubMed  CAS  Google Scholar 

  154. Jacobson R, Wang P, Glueck C. Myositis and rhabdomyolysis associated with concurrent use of simvastatin and nefazodone [letter]. JAMA 1997; 277: 296

    Article  PubMed  CAS  Google Scholar 

  155. Gilad R, Lampi Y Rhabdomyolysis induced by simvastatin and ketoconazole treatment. Clin Neuropharmacol 1999; 22: 295–7

    PubMed  CAS  Google Scholar 

  156. Segaert M, De Soete C, Vandewiele I, et al. Drug-interaction-inducedrhabdomyolysis. Nephrol Dial Transplant 1996; 11: 1846–7

    Article  PubMed  CAS  Google Scholar 

  157. Mogyorosi A, Bradley B, Schubert M. Rhabdomyolysis attributed to HMG-CoA-reductase inhibitor-warfarin interaction [abstract]. Am J Kidney Dis 1999; 33: A36

    Article  Google Scholar 

  158. Mogyorosi A, Bradley B, Showalter A, et al. Rhabdomyolysis and acute renal failure due to combination therapy with simvastatin and warfarin. J Intern Med 1999; 246: 599–602

    Article  PubMed  CAS  Google Scholar 

  159. Gruer P, Vega J, Mercuri M, et al. Concomitant use of cytochrome P450 3A4 inhibitors and simvastatin. Am J Cardiol 1999; 84: 811–5

    Article  PubMed  CAS  Google Scholar 

  160. Murphy M, Dominiczak M. Efficacy of statin therapy: possible effect of phenytoin. Postgrad Med 1999; 75: 260–359

    Google Scholar 

  161. von Rosenstiel N, Adam D. Macrolide antibacterial — drug interactions of clinical significance. Drug Saf 1995; 13: 105–22

    Article  Google Scholar 

  162. Mazzu A, Stein EA, Kelly E, et al. Minor alterations in cerivastatin pharmacokinetics by erythromycin and itraconazole. Pharmacotherapy 1999; 19: 480–1

    Google Scholar 

  163. Kantola T, Kivisto K, Neuvonen P. Effect of itraconazole on cerivastatin pharmacokinetics. Eur J Clin Pharmacol 1999; 54: 851–5

    Article  PubMed  CAS  Google Scholar 

  164. Muck W, Mai I, Fritsche L, et al. Increase in cerivastatin systemic exposure after single and multiple dosing in cyclosporine-treated kidney transplant recipients. Clin Pharmacol Ther 1999; 65: 251–61

    Article  PubMed  CAS  Google Scholar 

  165. Kadmon M, Klunemann C, Bohme M, et al. Inhibition by cyclosporin A of adenosine triphosphate-dependent transport from the hepatocyte into bile. Gastroenterology 1993; 104: 1507–14

    PubMed  CAS  Google Scholar 

  166. Stapf V, Thalhammer T, Huber-Huber R, et al. Inhibition of rhodamine 123 secretion by cyclosporin A as a model of P-glycoprotein mediated transport in liver. Anticancer Res 1994; 14: 581–6

    PubMed  CAS  Google Scholar 

  167. Tuffs A. Bayer faces potential fine over cholesterol lowering drug [abstract]. BMJ 2001; 323: 415a

    Article  Google Scholar 

  168. Siedlik P, Olson S, Yang B-B, et al. Erythromycin coadministration increases plasma atorvastatin concentrations. J Clin Pharmacol 1999; 39: 501–4

    PubMed  CAS  Google Scholar 

  169. Wenisch C, Krause R, Fladerer P, et al. Acute rhabdomyolysis after atorvastatin and fusidic acid therapy [letter]. Am J Med 2000; 109: 78

    Article  PubMed  CAS  Google Scholar 

  170. Transon C, Leeman T, Dayer P. In vivo inhibition profile of cytochrome P450TB (CYP2C9) by (±)-fluvastatin. Clin Pharmacol Ther 1995; 58: 412–7

    Article  PubMed  CAS  Google Scholar 

  171. Cupp M, Tracey T. Cytochrome P450: new nomenclature and clinical implications. Am Fam Physician 1998; 57: 107–16

    PubMed  CAS  Google Scholar 

  172. Appel S, Dingemanse J. Pharmacokinetic and pharmacodynamic interactions of fluvastatin and their therapeutic implications. Rev Contemp Pharmacother 1996; 7: 167–82

    CAS  Google Scholar 

  173. Jokubaitis L. Updated clinical safety experience with fluvastatin. Am J Cardiol 1994; 73: D18–24

    Article  Google Scholar 

  174. Olsson A, Pears J, McKellar J, et al. ZD4522 — a new HMG-CoA reductase inhibitor — causes rapid and profound reductions in plasma LDL-C levels in patients with primary hypercholesterolaemia [abstract]. Atherosclerosis 2000; 151: 39

    Article  Google Scholar 

  175. Buckett L, Ballard P, Davidson R, et al. Selectivity of ZD4522 for inhibition of cholesterol synthesis in hepatic versus non-hepatic cells [abstract]. Atherosclerosis 2000; 151: 41

    Article  Google Scholar 

  176. McCormick A, McKillop D, Batters C, et al. ZD4522-An HMGCo-A reductuse inhibitor free of metabolically mediated drug interactions: metabolic studies in human in vitro systems. Presented at the 29th Annual Meeting of the American College of Clinical Pharmacology; 2000 Sept 17–19; Chicago (IL)

    Google Scholar 

  177. Martin P, Dane A, Schneck D, et al. Disposition of new HMG-CoA reductase inhibitor ZD4522 following dosing in heallhy subjects. Presented at the 29th Annual Meeting of the American College of Clinical Pharmacology; 2000 Sept 17–19; Chicago (IL)

    Google Scholar 

  178. Ahmad S. Lovastatin-warfarin interaction [letter]. Arch Intern Med 1990; 150: 2407

    Article  PubMed  CAS  Google Scholar 

  179. Trenque T, Choisy H, Germain M-L. Pravastatin: possible interaction with oral anticoagulant? [abstract]. BMJ 1996; 312: 886

    PubMed  CAS  Google Scholar 

  180. Grau E, Perella M, Pastor E. Simvastatin-oral anticoagulant interaction. Lancet 1996; 347: 405–6

    Article  PubMed  CAS  Google Scholar 

  181. Rise I. Bilateral subdural haematoma caused by simvastatin during warfarin treatment [letter]. Acta Neurol Scand 1997; 96: 339

    Google Scholar 

  182. Lin J, Ito M, Stolly S, et al. The effect of converting from pravastatin to simvastatin on the pharmacodynamics of warfarin. J Clin Pharmacol 1999; 39: 86–90

    Article  PubMed  CAS  Google Scholar 

  183. Stern R, Abel R, Gibson G, et al. Atorvastatin does not alter the anticoagulant activity of warfarin. J Clin Pharmacol 1997; 37: 1062–4

    PubMed  CAS  Google Scholar 

  184. Trilli L, Kelley C, Aspinall S, et al. Potential interaction between warfarin and fluvastatin. Ann Pharmacother 1996; 30: 1399–402

    PubMed  CAS  Google Scholar 

  185. Kline S, Harrell C. Potential warfarin-fluvastatin interaction [letter]. Ann Pharmacother 1997; 31: 790

    PubMed  CAS  Google Scholar 

  186. Schall R, Mueller F, Hundt H, et al. No pharmacokinetic or pharmacodynamic interaction between rivastatin and warfarin. J Clin Pharmacol 1995; 35: 306–13

    PubMed  CAS  Google Scholar 

  187. Weber P, Lettieri J, Kaiser L, et al. Lack of mutual pharmacokinetic interaction between cerivastatin, a new HMG-CoA reductase inhibitor, and digoxin in healthy normocholesterolaemic volunteers. Clin Ther 1999; 21: 1563–75

    Article  PubMed  CAS  Google Scholar 

  188. Lettieri J, Krol G, Mazzu A, et al. Lack of pharmacokinetic interaction between cerivastatin, a new HMG-CoA reductase inhibitor, and digoxin [abstract]. Atherosclerosis 2000; 130: S29

    Article  Google Scholar 

  189. Malinoski J. Atorvastatin: a hydroxymethylglutaryl-coenzyme A reductase inhibitor. Am J Health Syst Pharm 1998; 55: 2253–67

    Google Scholar 

  190. Stern R, Smithers J, Olson S. Atorvastatin does not produce a clinically significant effect on the pharmacokinetics of terfenadine. J Clin Pharmacol 1998; 38: 753–7

    PubMed  CAS  Google Scholar 

  191. Yang B-B, Hounslow N, Sedman A, et al. Effects of atorvastatin, an HMG-CoA reductase inhibitor, on hepatic oxidative metabolism of antipyrine. J Clin Pharmacol 1996; 36: 356–60

    PubMed  CAS  Google Scholar 

  192. Yang B-B, Smithers J, Abel R, et al. Atorvastatin pharmacokinetic interactions with other CYP3A4 substrates: erythromycin and ethinyl estradiol [abstract]. Pharm Res 1996; 13: S437

    Google Scholar 

  193. Salonen J, Malin R, Tuomainen T-P, et al. Polymorphism in high density lipoprotein paraoxonase gene and risk of acute myocardial infarction in men: prospective nested case-control study. BMJ 1999; 319: 487–9

    Article  PubMed  CAS  Google Scholar 

  194. Nordin C, Dahl M, Erikson M, et al. Is the cholesterol-lowering effect of simvastatin influenced by CYP2D6 polymorphism? Lancet 1997; 350: 29–30

    Article  PubMed  CAS  Google Scholar 

  195. Jukema J, Bruschke A, van Boven A, et al. Effects of lipid lowering by pravastatin on progression and regression of coronary artery disease in symptomatic men with normal to moderately elevated serum cholesterol levels: the Regression Growth Evaluation Statin Study (REGRESS). Circulation 1995; 91: 2528–40

    Article  PubMed  CAS  Google Scholar 

  196. Sacks F, Gibson C, Rosner B, et al. The influence of pretreatment low density lipoprotein cholesterol concentrations on the effect of hypercholesterolaemic therapy on coronary atherosclerosis in angiographic trials. Am J Cardiol 1995; 76: C78–85

    Article  Google Scholar 

  197. Stenestrand UM, Wallentin LMP, for the Swedish Registerof Cardiac Intensive Care, et al. Early slatin treatment following acute myocardial infarction and 1-year survival. JAMA 2001; 285: 430–6

    Article  PubMed  CAS  Google Scholar 

  198. Vaughan C, Murphy M, Buckley B. Statins do more than just lower cholesterol. Lancet 1996; 348: 1079–82

    Article  PubMed  CAS  Google Scholar 

  199. Egashira K, Hirooka Y, Kai H, et al. Reduction in serum cholesterol with pravastatin improves endothelium-dependent coronary vasomotion in patients with hypercholesterolaemia. Circulation 1994; 85: 2419–524

    Google Scholar 

  200. Treasure C, Klein J, Weintraub W, et al. Beneficial effects of cholesterol-lowering therapy on the coronary endothelium in patients with coronary artery disease. N Engl J Med 1995; 332: 481–7

    Article  PubMed  CAS  Google Scholar 

  201. Straznicky N, Howes L, Lam W, et al. Effects of pravastatin on cardiovascular reactivity to norepinephrine and angiotensin II in patients with hypercholesterolaemia and systemic hypertension. Am J Cardiol 1995; 75: 582–6

    Article  PubMed  CAS  Google Scholar 

  202. Aengevaeren W. Beyond lipids — the role of the endothelium on coronary artery disease. Atherosclerosis 1999; 147: S11–6

    Article  PubMed  CAS  Google Scholar 

  203. Feron OP, Dessy CP, Desager J-PP, et al. Hydroxymethylglutaryl-coenzyme A reductase inhibition promotes endothelial nitric oxide synthase activation through a decrease in caveolin abundance. Circulation 2001; 103: 113–8

    Article  PubMed  CAS  Google Scholar 

  204. Rosensen R, Tangney C. Antithrombotic properties of statins. JAMA 1998; 279: 1643–50

    Article  Google Scholar 

  205. Mayer J, Eller T, Brauer P, et al. Effects of long-term treatment with lovastatin on the clotting system and blood platelets. Ann Haematol 1992; 64: 196–201

    Article  CAS  Google Scholar 

  206. Lacoste L, Lam L, Hung J, et al. Hypercholesterolaemia and coronary disease: correction of the increased thrombogenic potential with cholesterol reduction. Circulation 1995; 92: 3172–7

    Article  PubMed  CAS  Google Scholar 

  207. Notarbartolo A, Davi G, Averna M, et al. Inhibition of thromboxane biosynthesis and platelet function by simvastatin in type IIa hypercholesterolaemia. Effects of pravastatin. Arterioscler Thromb Vasc Biol 1995; 15: 247–51

    Article  PubMed  CAS  Google Scholar 

  208. Buemi M, Allegra A, Corica F, et al. Effect of fluvastatin on proteinuria in patients with immunoglobulin A nephropathy. Clin Pharmacol Ther 2000; 67: 427–31

    Article  PubMed  CAS  Google Scholar 

  209. Tonolo G, Ciccarese M, Brizzi P, et al. Reduction of albumin excretion rate in normotensive microalbuminuric type 2 diabetic patients during long term simvastatin treatment. Diabetes Care 1997; 20: 1891–5

    Article  PubMed  CAS  Google Scholar 

  210. Grandgaliano G, Biswas P, Choudhury G, et al. Simvastatin inhibits PDGF-induced DNA synthesis in human glomerular mesangial cells. Kidney Int 1993; 44: 503–8

    Article  Google Scholar 

  211. Buemi M, Allegra A, Senatore M, et al. Pro-apoptopic effect of fluvastatin on human muscle cells. Eur J Pharmacol 1999; 370: 201–3

    Article  PubMed  CAS  Google Scholar 

  212. Cummings S, Bauer D. Do statins prevent both cardiovascular disease and fracture? JAMA 2000; 283: 3255–7

    Article  PubMed  CAS  Google Scholar 

  213. Rabelink A, Hene R, Erkelens D, et al. Partial remission of nephrotic syndrome in patients on long-term simvastatin. Lancet 1990; 335: 1045–6

    Article  PubMed  CAS  Google Scholar 

  214. Wang P, Soloman D, Mogun H, et al. HMG-CoA reductase inhibitors and the risk of hip fractures in elderly patients. JAMA 2000; 283: 3211–6

    Article  PubMed  CAS  Google Scholar 

  215. Meier C, Schlienger R, Kraenzlin M, et al. HMG-CoA reductase inhibitors and the risk of fractures. JAMA 2000; 283: 3205–10

    Article  PubMed  CAS  Google Scholar 

  216. Su SF, Hsiao CL, Chu CW, et al. Effects of pravastatin on left ventricular mass in patients with hyperlipidemia and essential hypertension. Am J Cardiol 2000; 86: 514–8

    Article  PubMed  CAS  Google Scholar 

  217. Pepys MB. The renaissance of C reactive protein: it may be a marker not only of acute illness but also of future cardiovascular disease [editorial]. BMJ 2001; 322: 4–5

    Article  PubMed  CAS  Google Scholar 

  218. Ridker PM, Rifai N, Pfeffer MA, et al. Long-term effects of pravastatin on plasma concentration of C-reactive protein. The Cholesterol and Recurrent Events (CARE) Investigators. Circulation 1999; 100: 230–5

    Article  PubMed  CAS  Google Scholar 

  219. Packard C, O’Reilly D, Caslake M, et al. Lipoprotein-associated phospholipase A2 as an independent predictor of coronary heart disease. N Engl J Med 2000; 343: 1148–55

    Article  PubMed  CAS  Google Scholar 

  220. Kobashigawa J, Katznelson S, Laks H, et al. Effect of pravastatin on outcomes after cardiac transplantation. N Engl J Med 1995; 333: 621–7

    Article  PubMed  CAS  Google Scholar 

  221. Weissberg P. Mechanisms modifying atherosclerotic disease-from lipids to vascular biology. Atherosclerosis 1999; 147: S3–10

    Article  PubMed  CAS  Google Scholar 

  222. Rubins H, Robins S, Collins D, et al. Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. N Engl J Med 1999; 341: 410–8

    Article  PubMed  CAS  Google Scholar 

  223. Frick M, Elo O, Haapa K, et al. Helsinki Heart Study: primaryprevention trial with gemfibrozil in middle-aged men with dyslipidaemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease. N Engl J Med 1987; 317: 1237–45

    Article  PubMed  CAS  Google Scholar 

  224. Pierce L, Wysowski D, Gross T. Myopathy and rhabdomyolysis associated with lovastatin-gemfibrozil combination therapy. JAMA 1990; 264: 71–5

    Article  PubMed  CAS  Google Scholar 

  225. Van Puijenbroek E, Du-Buf-Vereijken P, Spooren PVDJ. Possible increased risk of rhabdomyolysis during concomitant use of simvastatin and gemfibrozil. J Intern Med 1996; 240: 403–4

    Article  PubMed  Google Scholar 

  226. Wiklund O, Bergman M, Bondjers G, et al. Pravastatin and gemfibrozil alone and in combination for the treatment of hypercholesterolaemia. Am J Med 1993; 94: 13–20

    Article  PubMed  CAS  Google Scholar 

  227. Miller D, Spence J. Clinical pharmacokinetics of fibric acid derivatives (fibrates). Clin Pharmacokinet 1998; 34: 155–62

    Article  PubMed  CAS  Google Scholar 

  228. Garnett W. Interactions with hydroxymethyl-CoA reductase inhibitors. Am J Health Syst Pharm 1995; 52: 1639–45

    PubMed  CAS  Google Scholar 

  229. Rosensen R, Frauenheim W. Safety of combined pravastatingemfibrozil therapy. Am J Cardiol 1995; 74: 499–500

    Article  Google Scholar 

  230. Pan WJ, Gustavson LE, Achari R, et al. Lack of a clinically significant pharmacokinetic interaction between fenofibrate and pravastatin in healthy volunteers. J Clin Pharmacol 2000; 40: 316–23

    Article  PubMed  CAS  Google Scholar 

  231. Illingworth DR, O’Malley K. The hypolipidaemic effects of lovastatin and clofibrate alone and in combination in patients with type III hyperlipoproteinemia. Metabolism 2001; 1990: 403–9

    Google Scholar 

  232. Duell PB, Connor WE, Illingworth DR. Rhabdomyolysis after taking atorvastatin with gemfibrozil. Am J Cardiol 1998; 81: 368–9

    Article  PubMed  CAS  Google Scholar 

  233. Pogson G, Kindred L, Carper B. Rhabdomyolysis and renal failure associated with cerivastatin-gemfibrozil combination therapy [letter]. Am J Cardiol 1999; 83: 1146

    Article  PubMed  CAS  Google Scholar 

  234. Alexandridis G, Pappas GA, Elisaf MS. Rhabdomyolysis due to combination therapy with cerivastatin and gemfibrozil [letter]. Am J Med 2000; 109: 261–2

    Article  PubMed  CAS  Google Scholar 

  235. Ozdemir O, Boran M, Gokce V, et al. A case with severe rhabdomyolysis and renal failure associated with cerivastatingemfibrozil combination therapy — a case report. Angiology 2000; 51: 695–7

    PubMed  CAS  Google Scholar 

  236. Illingworth DR, Bacon S. Treatment of heterozygous familial hypercholesterolaemia with lipid-lowering drugs. Arteriosclerosis 1989; 9: 1121–34

    Google Scholar 

  237. Hoogerbrugge N, Mol M, Van Dormaal J, et al. The efficacy and safety of pravastatin, compared to and in combination with bile acid binding resins, in familial hypercholesterolaemia. J Intern Med 1990; 228: 261–6

    Article  PubMed  CAS  Google Scholar 

  238. Farmer J, Gotto A. Antihyperlipidaemic agents: drug interactions of clinical significance. Drug Saf 1994; 11: 301–9

    Article  PubMed  CAS  Google Scholar 

  239. Reaven P, Witztum J. Lovastatin, nicotinic acid, and rhabdomyolysis [letter]. Ann Intern Med 1988; 109: 597–8

    PubMed  CAS  Google Scholar 

  240. Jacobson T. Fluvastatin with and without niacin for hypercholesterolaemia. Am J Cardiol 1994; 74: 149–54

    Article  PubMed  CAS  Google Scholar 

  241. Stein EA, Davidson M, Dujovne C, et al. Efficacy and safety of low-dose simvastatin and niacin, alone and in combination, in patients with combined hyperlipidaemia: a prospective trial. J Cardiovasc Pharmacol Ther 1996; 1: 107–16

    PubMed  CAS  Google Scholar 

  242. Vacek JL, Dittmeier G, Chiarelli T, et al. Comparison of lovastatin (20 mg) and nicotinic acid (1.2 g) with either drug alone for type II hyperlipoproteinemia. Am J Cardiol 1995; 76: 182–4

    Article  PubMed  CAS  Google Scholar 

  243. Gardner SF, Schneider EF, Granberry MC, et al. Combination therapy with low-dose lovastatin and niacin is as effective as higher-dose lovastatin. Pharmacotherapy 1996; 16: 419–23

    PubMed  CAS  Google Scholar 

  244. Kobashigawa J, Kasiske B. Hyperlipidaemia in solid organ transplantation. Transplantation 1997; 63: 331–8

    Article  PubMed  CAS  Google Scholar 

  245. Kirk J, Dupuis R. Approaches to the treatment of hyperlipidaemia in the solid organ transplant recipient. Ann Pharmacother 1995; 29: 879–91

    PubMed  CAS  Google Scholar 

  246. Knopp R. Drug treatment of lipid disorders. N Engl J Med 1999; 341: 498–511

    Article  PubMed  CAS  Google Scholar 

  247. Corpier C, Jones P, Suki W, et al. Rhabdomyolysis and renal injury with lovastatin use. Report of two cases in cardiac transplant recipients. JAMA 1988; 260: 239–41

    Article  PubMed  CAS  Google Scholar 

  248. Goldberg R, Roth D. A preliminary report of the safety and efficacy of fluvastatin for hypercholesterolaemia in renal transplant patients receiving cyclosporine. Am J Cardiol 1995; 76: A107–9

    Article  Google Scholar 

  249. Southworth M, Mauro V. The use of HMG-CoA reductase inhibitors to prevent accelerated graft atherosclerosis in heart transplant patients. Ann Pharmacother 1997; 31: 489–91

    PubMed  CAS  Google Scholar 

  250. Capone D, Stanziale P, Gentile A, et al. Effects of simvastatin and pravastatin on hyperlipidaemia and cyclosporin blood levels in renal transplant recipients. Am J Nephrol 1999; 19: 411–5

    Article  PubMed  CAS  Google Scholar 

  251. Barbir M, Rose S, Kushwaha S, et al. Low-dose simvastatin for the treatment of hypercholesterolaemia in recipients of cardiac transplantation. Int J Cardiol 1991; 33: 241–6

    Article  PubMed  CAS  Google Scholar 

  252. Rodriguez J, Crespo-Leiro M, Paniangua M, et al. Rhabdomyolysis in heart transplant patients on HMG-Co-A reductase inhibitors and cyclosporine. Transplant Proc 1999; 31: 2522–3

    Article  PubMed  CAS  Google Scholar 

  253. Keogh A, Macdonald P, Kaan A, et al. Efficacy and safety of pravastatin vs simvastatin after cardiac transplantation. J Heart Lung Transplant 2000; 19: 529–37

    Article  PubMed  CAS  Google Scholar 

  254. Li P, Mak T, Wang A, et al. The interaction of fluvastatin and cyclosporin A in renal transplant patients. Int J Clin Pharmacol Ther 1995; 33: 246–8

    PubMed  Google Scholar 

  255. Hadjigavriel M, Kyriakides G. Fluvastatin in renal transplantation [abstract]. Transplant Proc 1997; 29: 3050

    Article  PubMed  CAS  Google Scholar 

  256. Li P, Mak T, Chan T, et al. Effect of fluvastatin on lipoprotein profiles in treating renal transplant recipients with dyslipoproteinaemia. Transplantation 1995; 60: 652–6

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

John Feely has participated in clinical trials with pravastatin, simvastatin, atorvastatin and rosuvastatin. David Williams has participated in clinical trials with atorvastatin and rosuvastatin. We would like to thank Ms Orla Sheehan for her assistance in the preparation of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Williams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, D., Feely, J. Pharmacokinetic-Pharmacodynamic Drug Interactions with HMG-CoA Reductase Inhibitors. Clin Pharmacokinet 41, 343–370 (2002). https://doi.org/10.2165/00003088-200241050-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200241050-00003

Keywords

Navigation