Skip to main content

Advertisement

Log in

Two Subtypes of Mucinous Adenocarcinoma of The Colorectum: Clinicopathological and Genetic Features

  • Gastrointestinal Oncology
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

This work is aimed at comparing mucinous colorectal adenocarcinomas (MUC) and non-mucinous colorectal adenocarcinomas (non-MUC), and at verifying the existence of two different subgroups of MUC, in terms of clinicopathological features, chromosomal alterations, and outcome, in a geographical area where mucinous colorectal cancer resulted as being very frequent.

Methods

One hundred and fifty-six unselected patients who underwent curative colorectal resection for sporadic colorectal cancer over a 4-year period were evaluated for histological classification as to MUC and non-MUC subtype, for microsatellite instability (MSI) using six microsatellite markers, and for the presence of p27, Fhit, and cyclooxygenase-2 (Cox-2). Molecular data, immunohistochemical results, recurrence frequency, and patient survival were analyzed statistically in relation to histological subtypes.

Results

MUC accounted for 38.5% of all colorectal carcinomas. Compared to non-MUCs, MUCs were more frequently located in the proximal colon (p < 0.001), and more frequently showed MSI phenotype (p < 0.001), altered protein expression of hMlh1 (p = 0.030), Fhit (p <0.001), and p27 (p < 0.001). Compared to MUC with microsatellite-stable (MSS) phenotype, MUC with MSI more frequently resulted as being located in the proximal colon (p = 0.013), and more frequently showed altered expression of hMlh1 (p < 0.001), hMsh2 (p = 0.008), Fhit (p < 0.001), and p27 (p = 0.015). Significantly better survival of patients with proximal MUC (p = 0,012), with MSI MUC (p = 0.017), and with MUC with altered p27 expression (p = 0.02).

Conclusion

The results of the present study confirm that MUC represents distinct clinicopathological and genetic features as compared to non-mucinous tumors and support the hypothesis that MUC includes two subtypes with different genetic pathways and behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.

Similar content being viewed by others

References

  1. Symonds DA, Vickery AL. Mucinous carcinoma of the colon and rectum. Cancer 1976; 37: 1891–90

    Article  PubMed  CAS  Google Scholar 

  2. Nissan A, Guillem JG, Paty PB, et al. Signet-ring cell carcinoma of the colon and rectum: a matched control study. Dis Colon Rectum 1999; 42: 1176–80

    Article  PubMed  CAS  Google Scholar 

  3. Parham D. Colloid carcinoma. Ann Surg 1923; 77: 90–105

    PubMed  CAS  Google Scholar 

  4. Umpleby HC, Ranson DL, Williamson RC. Peculiarities of mucinous colorectal carcinoma. Br J Surg 1985; 72: 715–8

    Article  PubMed  CAS  Google Scholar 

  5. Green JB, Timmcke AE, Mitchell WT, et al. Mucinous carcinoma-just another colon cancer? Dis Colon Rectum 1993; 36: 49–54

    Article  PubMed  CAS  Google Scholar 

  6. Secco GB, Fardelli R, Campora E, et al. Primary mucinous adenocarcinomas and signet-ring cell carcinomas of the colon and rectum. Oncology 1994; 51: 30–4

    Article  PubMed  CAS  Google Scholar 

  7. Consorti F, Lorenzotti A, Midiri G, et al. Prognsotic significance of mucinous carcinoma of colon and rectum: a prospective case-control study. J Surg Oncol 2000; 73: 70–4

    Article  PubMed  CAS  Google Scholar 

  8. Kanemitsu Y, Kato T, Hirai T, et al. Survival after curative resection for mucinous adenocarcinoma of the colorectum. Dis Colon Rectum 2003; 46; 160–7

    Article  PubMed  Google Scholar 

  9. Berg JW, Godwin JD 2nd. The epidemiologic pathology of carcinomas of the large bowel. J Surg Oncol 1974; 6: 381–400

    Article  PubMed  CAS  Google Scholar 

  10. Pihl E, Nairn RC, Hughes ES, et al. Mucinous colorectal carcinoma: immunopathology and prognosis. Pathology 1980; 41: 439–47

    Article  Google Scholar 

  11. Minsky BD, Mies C, Rich TA, et al. Colloid carcinoma of the colon and rectum. Cancer 1987; 60: 3103–12

    Article  PubMed  CAS  Google Scholar 

  12. Halvorsen TB, Seim E. Influence of mucinous components on survival in colorectal adenocarcinomas: a multivariate analysis. J Clin Pathol 1988; 41: 1068–72

    Article  PubMed  CAS  Google Scholar 

  13. Du W, Mah JT, Lee J, et al. Incidence and survival of mucinous adenocarcinoma of the colorectum: a population-based study from an Asian country. Dis Colon Rectum 2004; 47: 78–85

    Article  PubMed  Google Scholar 

  14. Levin KE, Dozois RR. Epidemiology of large bowel cancer. World J Surg 1991; 15: 562–7

    Article  PubMed  CAS  Google Scholar 

  15. Zhang H, Evertsson S, Sun X. Clinicopathological and genetic characteristics of mucinous carcinomas in the colorectum. Int J Oncol 1999; 14: 1057–61

    PubMed  CAS  Google Scholar 

  16. Wu CS, Tung SY, Chen PC, et al. Clinicopathological study of colorectal mucinous carcinoma in Taiwan: a multivariate analysis. J Gastroenterol Hepatol 1996; 11: 77–81

    Article  PubMed  CAS  Google Scholar 

  17. Sundbad AS, Paz RA. Mucinous carcinoma of the colon and the rectum and their relation to polyps. Cancer 1982; 50: 2504–9

    Article  Google Scholar 

  18. Berovalis P, Harlaftis N. Prognostic significance of mucinous component in colorectal carcinoma. Tech Coloproctol 2004; 8 Suppl: s123–5

    Google Scholar 

  19. Kondo T, Masuda H, Abe Y, et al. Two subtypes in colorectal mucinous carcinoma in relation to microsatellite instability. Hepatogastroenterology 2002; 49: 660–3

    Google Scholar 

  20. Liu XP, Sato T, Oga A, et al. Two subtypes of mucinous colorectal carcinoma characterized by laser scanning cytometry and comparative genomic hybridization. Int J Oncol 2004; 25: 615–25

    PubMed  CAS  Google Scholar 

  21. Lengauer C, Kinzler KW, Vogelstein B. Genetic instability in colorectal cancers. Nature 1997;386: 623–7

    Article  PubMed  CAS  Google Scholar 

  22. Martin L, Assem M, Piard F. Are there several types of colorectal carcinomas? Correlations with genetic data. Eur J Cancer Prev Dec 1999;8(Suppl 1): S13–S20

    Google Scholar 

  23. Haydon AM, J.R. J. Emerging pathways in colorectal-cancer development. Lancet Oncol 2002;3: 83–8

  24. Arribas R, Ribas M, Risques RA, et al. Prospective assessment of allelic losses at 4p14–16 in colorectal cancer: two mutational patterns and a locus associated with poorer survival. Clin Cancer Res 1999;5: 3454–9

    PubMed  CAS  Google Scholar 

  25. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990;61: 759–67

    Article  PubMed  CAS  Google Scholar 

  26. Tejpar S, Van Cutsem E. Molecular and genetic defects in colorectal tumorigenesis. Best Pract Res Clin Gastroenterol 2002;16: 171–85

    Article  PubMed  CAS  Google Scholar 

  27. Halling KC, French AJ, McDonnell SK, et al. Microsatellite instability and 8p allelic imbalance in stage B2 and C colorectal cancers. J Natl Cancer Inst 1999;91: 1295–303

    Article  PubMed  CAS  Google Scholar 

  28. Modrich P. Mechanisms and biological effects of mismatch repair. Annu Rev Genet 1991;25: 229–53

    Article  PubMed  CAS  Google Scholar 

  29. Sarli L, Bottarelli L, Azzoni C, et al. Abnormal Fhit protein expression and high frequency of microsatellite instability in sporadic colorectal cancer. Eur J Cancer 2004;40: 1581–1588

    Article  PubMed  CAS  Google Scholar 

  30. Loda M, Cukor B, Tam SW, Lavin et al. Increased proteasome-dependent degradation of the cyclin-dependent kinase inhibitor p27 in aggressive colorectal carcinomas. Nat Med 1997;3: 231–4

  31. Sheehan KM, Sheahan K, O’Donoghue DP, et al. The relationship between cyclooxygenase-2 expression and colorectal cancer. JAMA 1999; 282: 1254–7

    Article  PubMed  CAS  Google Scholar 

  32. Sarli L, Bottarelli L, Bader G, et al. Association between recurrence of sporadic colorectal cancer, high level of microsatellite instability, and loss of heterozygosity at chromosoma 18q. Dis Colon Rectum 2004; 47: 1467–82

    Article  PubMed  Google Scholar 

  33. Jass JR, Sobin LH. Histological typing of intestinal tumours. 2nd ed. Berlin, Germany: Springer-Verlag, 1989

    Google Scholar 

  34. Moertel CG, Fleming TR, Macdonald JS, et al. Levamisole and fluorouracil for adjuvant therapy of resected colon carcinoma. N Engl J Med 1990;322352–8

  35. Dent OF, Chapuis PH, Bokey EL, et al. Methodology and reporting in studies of local recurrence after curative excision of the rectum for cancer. Br J Surg 2001;88: 1476–80

    Article  PubMed  CAS  Google Scholar 

  36. Jen J, Kim H, Piantadosi S, et al. Allelic loss of chromosome 18q and prognosis in colorectal cancer. N Engl J Med 1994;331: 213–221

    Article  PubMed  CAS  Google Scholar 

  37. Thibodeau SN, Bren G, Schaid D. Microsatellite instability in cancer of the proximal colon. Science 1993;260: 816–9

    Article  PubMed  CAS  Google Scholar 

  38. Halling KC, French AJ, McDonnell SK, et al. Microsatellite instability and 8p allelic imbalance in stage B2 and C colorectal cancers. J Natl Cancer Inst 1999; 91: 1295–303

    Article  PubMed  CAS  Google Scholar 

  39. Beckmann MW, Picard F, An HX, et al. Clinical impact of detection of loss of heterozygosity of BRCA1 and BRCA2 markers in sporadic breast cancer. Br J Cancer 1996;73: 1220–1226

    PubMed  CAS  Google Scholar 

  40. Mueller JD, Haegle N, Keller G, et al. Loss of heterozygosity and microsatellite instability in de novo versus ex-adenoma carcinomas of the colorectum. Am J Pathol 1998;153: 1977–84

    PubMed  CAS  Google Scholar 

  41. Ward R, Meagher A, Tomlinson I, et al. Microsatellite instability and the clinicopathological features of sporadic colorectal cancer. Gut 2001;48: 821–829

    Article  PubMed  CAS  Google Scholar 

  42. Thibodeau SN, French AJ, Cunningham JM, et al. Microsatellite instability in colorectal cancer: different mutator phenotypes and the principal involvement of hMLH1. Cancer Res 1998;58: 1713–8

    PubMed  CAS  Google Scholar 

  43. Peiro´ G, Diebold J, Lohse P, et al. Microsatellite instability, loss of heterozygosity, and loss of hMLH1 and hMSH2 protein expression in endometrial carcinoma. Human Pathol 2002;33: 347–54

    Article  CAS  Google Scholar 

  44. Tsihlias J, Kapusta L, Slingerland J. The prognostic significance of altered cyclin-dependent kinase inhibitors in human cancer. Annu Rev Med 1999;50: 401–23

    Article  PubMed  CAS  Google Scholar 

  45. Kang SM, Maeda K, Onoda N, et al. Combined analysis of p53 and vascular endothelial growth factor expression in colorectal carcinoma for determination of tumor vascularity and liver metastasis. Int J Cancer 1977; 74: 502–7

    Article  Google Scholar 

  46. Boland GP, Butt IS, Prasad R, et al. COX-2 expression is associated with an aggressive phenotype in ductal carcinoma in situ. Br J Cancer 2004;90: 423–9

    Article  PubMed  CAS  Google Scholar 

  47. Suma KS, Nirmala V. Mucinous component in colorectal carcinoma-prognostic significance: a study in a south Indian population. J Surg Oncol 1992;51: 60–4

    Article  PubMed  CAS  Google Scholar 

  48. Nozoe T, Anai H, Nasu S, et al. Clinicopathological characteristics of mucinous carcinoma of the colon and rectum. J Surg Oncol 2000; 75: 103–7

    Article  PubMed  CAS  Google Scholar 

  49. Thomas RM, Sobin LH. Gastrointestinal cancer. Cancer 1995;75 (Suppl1): 154–70

    Article  PubMed  CAS  Google Scholar 

  50. Sasaki O, Atkin WS, Jass JR. Mucinous carcinoma of the rectum. Histopathology 1987;11: 259–72

    Article  PubMed  CAS  Google Scholar 

  51. Connelly JH, Robey-Cafferty SS, Cleary KR. Mucinous carcinomas of the colon and rectum. An analysis of 62 stage B and C lesions. Arch Pathol Lab Med 1991;115: 1022–5

    PubMed  CAS  Google Scholar 

  52. Okuno M, Ikehara T, Nagayama M, et al. Mucinous colo-rectal carcinoma: clinical pathology and prognosis. Am Surg. 1988;54: 681–5

    PubMed  CAS  Google Scholar 

  53. Odone V, Chang L, Caces J, et al. The natural history or colorectal carcinoma in adolescents. Cancer 1982; 49: 1716–20

    Article  PubMed  CAS  Google Scholar 

  54. de Mascarel A, Coindre JM, de Mascarel I, et al. The prognostic significance of specific histologic features of carcinoma of the colon and rectum. Surg Gynecol Obstet 1981; 153: 511–4

    PubMed  Google Scholar 

  55. Isono K, Saitoh T, Sato H, Nakano K. Histopathological studies on the prognosis of rectal carcinoma, especially on the comparison with that of gastric carcinoma. Gan No Rinsho 1975; 21: 905–9

    Google Scholar 

  56. Hanski C. ls mucinous carcinoma of the colorectum a distinct genetic entity? Br J Cancer 1995;72: 1350–6

    PubMed  CAS  Google Scholar 

  57. Akino F, Mitomi H, Nakamura T, et al. High apoptotic and low epithelial cell proliferation with underexpression of p21waf1/cip1 and p27kip1 of mucinous carcinomas of the colorectum. Am J Clin Pathol 2002; 117: 908–15

    Article  PubMed  CAS  Google Scholar 

  58. Messerini L, Ciantelli M, Baglioni S, et al. Prognostic significance of microsatellite instability in sporadic mucinous colorectal cancers. Human Pathol 1999; 30: 629–34

    Article  CAS  Google Scholar 

  59. Tenjo T, Toyoda M, Okuda J, et al. Prognostic significance of p27kip1 protein expression and spontaneous apoptosis in patients with colorectal adenocarcinoma. Oncology 2000; 58: 45–51

    Article  PubMed  CAS  Google Scholar 

  60. Zhang H, Sun XF. Loss of p27 expression predicts poor prognosis in patients with Dukes’ B stage or proximal colorectal cancer. Int J Oncol 2001; 19: 49–52

    PubMed  CAS  Google Scholar 

  61. Cheng JD, Werness BA, Babb JS, et al. Paradoxical correlation of cyclin-dependent kinase inhibitors p21 waf1/cip1 and p27kip1 in metastatic colorectal carcinoma. Clin Cancer Res 1999; 5: 1057–62

    PubMed  CAS  Google Scholar 

  62. Kobayashy M, Shiraishi T, Tonouchi H, et al. 5-FU improves p27-related poor prognosis in patients with Astler-Coller B2-C colorectal carcinoma. Oncol Rep 2002; 9: 29–33

    Google Scholar 

  63. McKay JA, Douglas JJ, Ross VG, et al. Analysis of key cell-cycle checkpoint proteins in colorectal tumours. J Pathol 2002; 196: 386–93

    Article  PubMed  CAS  Google Scholar 

  64. Azzoni C, Bottarelli L, Campanini N, et al. Distinct molecular patterns on proximal and distal sporadic colorectal cancer: arguments for different mechanisms in the tumorigenesis. Int J Colorectal Dis 2007;22: 115–26

    Article  PubMed  Google Scholar 

  65. Del Rio M, Molina F, Bascoul-Mollevi C, et al. Gene expression signature in advanced colorectal cancer patients select drugs and response for the use of leucovorin, Fluorouracil, and irinotecan. J Clin Oncol 2007; 25: 773–80

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarli Leopoldo MD.

Additional information

This work was supported in part by a grant from “Lega Italiana per la lotta contro i tumori”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leopoldo, S., Lorena, B., Cinzia, A. et al. Two Subtypes of Mucinous Adenocarcinoma of The Colorectum: Clinicopathological and Genetic Features. Ann Surg Oncol 15, 1429–1439 (2008). https://doi.org/10.1245/s10434-007-9757-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-007-9757-1

Keywords

Navigation