Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cardiovascular abnormalities in autosomal-dominant polycystic kidney disease

Abstract

Cardiovascular problems are a major cause of morbidity and mortality in patients with autosomal-dominant polycystic kidney disease (ADPKD). Hypertension is a common early symptom of ADPKD, and occurs in approximately 60% of patients before renal function has become impaired. Hypertension is associated with an increased rate of progression to end-stage renal disease and is the most important potentially treatable variable in ADPKD. Left ventricular hypertrophy, which is a powerful, independent risk factor for cardiovascular morbidity and mortality, also occurs frequently in patients with ADPKD. Both hypertension and left ventricular hypertrophy have important roles in cardiovascular complications in these individuals. Moreover, biventricular diastolic dysfunction, endothelial dysfunction, increased carotid intima–media thickness, and impaired coronary flow velocity reserve are present even in young patients with ADPKD who have normal blood pressure and well-preserved renal function. These findings suggest that cardiovascular involvement starts very early in the course of ADPKD. Intracranial and extracranial aneurysms and cardiac valvular defects are other potential cardiovascular problems in patients with ADPKD. Early diagnosis and treatment of hypertension, with drugs that block the renin–angiotensin–aldosterone system, has the potential to decrease the cardiovascular complications and slow the progression of renal disease in ADPKD.

Key Points

  • Cardiovascular problems are a major cause of morbidity and mortality in patients with autosomal-dominant polycystic kidney disease (ADPKD)

  • Hypertension, a common symptom of ADPKD, is associated with rapid progression to end-stage renal disease; the renin–angiotensin–aldosterone system (RAAS) is important in the development of hypertension in this setting

  • Early vascular changes have been reported even in young patients with ADPKD and normal blood pressure

  • Left ventricular hypertrophy is a common finding in patients with ADPKD

  • Patients with ADPKD have a higher prevalence of aneurysms and cardiac valvular abnormalities than the general population

  • Early and effective treatment of hypertension is very important to decrease the morbidity and mortality of patients with ADPKD, and drugs that inhibit the RAAS might be beneficial in this context

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Potential pathogenetic mechanisms of hypertension in autosomal-dominant polycystic kidney disease.97
Figure 2: An approach to assessment of cardiovascular risk factors and management in patients with autosomal-dominant polycystic kidney disease.

Similar content being viewed by others

References

  1. Ecder, T. et al. in Diseases of the Kidney and Urinary Tract (ed. Schrier, R. W.) 502–539. (Lippincott Williams & Wilkins, Philadelphia, 2007).

    Google Scholar 

  2. PKD Foundation. Polycystic Kidney Disease: The Most Common Life-Threatening Genetic Disease. (Polycystic Kidney Research Foundation, Kansas City, 2000).

  3. Fick, G. M. et al. Causes of death in autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 5, 2048–2056 (1995).

    CAS  PubMed  Google Scholar 

  4. Perrone, R. D. et al. Survival after end-stage renal disease in autosomal dominant polycystic kidney disease: contribution of extrarenal complications to mortality. Am. J. Kidney Dis. 38, 777–784 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Chapman, A. B. & Schrier, R. W. Pathogenesis of hypertension in autosomal dominant polycystic kidney disease. Semin. Nephrol. 11, 653–660 (1991).

    CAS  PubMed  Google Scholar 

  6. Ecder, T. & Schrier, R. W. Hypertension in autosomal-dominant polycystic kidney disease: early occurrence and unique aspects. J. Am. Soc. Nephrol. 12, 194–200 (2001).

    CAS  PubMed  Google Scholar 

  7. Gabow, P. A. et al. Factors affecting the progression of renal disease in autosomal-dominant polycystic kidney disease. Kidney Int. 41, 1311–1319 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Chapman, A. B. et al. Left ventricular hypertrophy in autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 8, 1292–1297 (1997).

    CAS  PubMed  Google Scholar 

  9. Kelleher, C. L. et al. Characteristics of hypertension in young adults with autosomal dominant polycystic kidney disease compared with the general U.S. population. Am. J. Hypertens. 17, 1029–1034 (2004).

    Article  PubMed  Google Scholar 

  10. Schrier, R. W. et al. The role of parental hypertension in the frequency and age of diagnosis of hypertension in offspring with autosomal-dominant polycystic kidney disease. Kidney Int. 64, 1792–1799 (2003).

    Article  PubMed  Google Scholar 

  11. Sedman, A. et al. Autosomal dominant polycystic kidney disease in childhood: a longitudinal study. Kidney Int. 31, 1000–1005 (1987).

    Article  CAS  PubMed  Google Scholar 

  12. Fick, G. M. et al. The spectrum of autosomal dominant polycystic kidney disease in children. J. Am. Soc. Nephrol. 4, 1654–1660 (1994).

    CAS  PubMed  Google Scholar 

  13. Ivy, D. D. et al. Cardiovascular abnormalities in children with autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 5, 2032–2036 (1995).

    CAS  PubMed  Google Scholar 

  14. Shamshirsaz, A. et al. Autosomal-dominant polycystic kidney disease in infancy and childhood: progression and outcome. Kidney Int. 68, 2218–2224 (2005).

    Article  PubMed  Google Scholar 

  15. Gabow, P. A. et al. Renal structure and hypertension in autosomal dominant polycystic kidney disease. Kidney Int. 38, 1177–1180 (1990).

    Article  CAS  PubMed  Google Scholar 

  16. Graham, P. C. & Lindop, G. B. M. The anatomy of the renin-secreting cell in adult polycystic kidney disease. Kidney Int. 33, 1084–1090 (1988).

    Article  CAS  PubMed  Google Scholar 

  17. Torres, V. E. et al. Synthesis of renin by tubulocystic epithelium in autosomal-dominant polycystic kidney disease. Kidney Int. 42, 364–373 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Loghman-Adham, M. et al. The intrarenal renin-angiotensin system in autosomal dominant polycystic kidney disease. Am. J. Physiol. Renal Physiol. 287, F775–F788 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Chapman, A. B. et al. The renin–angiotensin–aldosterone system and autosomal dominant polycystic kidney disease. N. Engl. J. Med. 323, 1091–1096 (1990).

    Article  CAS  PubMed  Google Scholar 

  20. Torres, V. E. et al. Effect of inhibition of converting enzyme on renal hemodynamics and sodium management in polycystic kidney disease. Mayo Clin. Proc. 66, 1010–1017 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Watson, M. L. et al. Effects of angiotensin converting enzyme inhibition in adult polycystic kidney disease. Kidney Int. 41, 206–210 (1991).

    Article  Google Scholar 

  22. Doulton, T. W. et al. The effect of sodium and angiotensin-converting enzyme inhibition on the classic circulating renin–angiotensin system in autosomal-dominant polycystic kidney disease patients. J. Hypertens. 24, 939–945 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Harrap, S. B. et al. Renal, cardiovascular and hormonal characteristics of young adults with autosomal dominant polycystic kidney disease. Kidney Int. 40, 501–508 (1991).

    Article  CAS  PubMed  Google Scholar 

  24. Barrett, B. J. et al. Differences in hormonal and renal vascular responses between normotensive patients with autosomal dominant polycystic kidney disease and unaffected family members. Kidney Int. 46, 1118–1123 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Torres, V. E. et al. Natriuretic response to volume expansion in polycystic kidney disease. Mayo Clin. Proc. 64, 509–515 (1989).

    Article  CAS  PubMed  Google Scholar 

  26. Klein, I. H. et al. Sympathetic activity is increased in polycystic kidney disease and is associated with hypertension. J. Am. Soc. Nephrol. 12, 2427–2433 (2001).

    CAS  PubMed  Google Scholar 

  27. Bakris, G. et al. Role of vasopressin in essential hypertension: racial differences. J. Hypertens. 15, 545–550 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Fernandes, S. et al. Chronic V2 vasopressin receptor stimulation increases basal blood pressure and exacerbates deoxycorticosterone acetate-salt hypertension. Endocrinology 143, 2759–2766 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Torres, V. E. Vasopressin antagonists in polycystic kidney disease. Kidney Int. 68, 2405–2418 (2005).

    Article  PubMed  Google Scholar 

  30. Danielsen, H. et al. Expansion of extracellular volume in early polycystic kidney disease. Acta Med. Scand. 219, 399–405 (1986).

    Article  CAS  PubMed  Google Scholar 

  31. Hocher, B. et al. Renal endothelin system in polycystic kidney disease. J. Am. Soc. Nephrol. 9, 1169–1177 (1998).

    CAS  PubMed  Google Scholar 

  32. Munemura, C. et al. Epidermal growth factor and endothelin in cyst fluid from autosomal dominant polycystic kidney disease cases: Possible evidence of heterogeneity in cystogenesis. Am. J. Kidney Dis. 24, 561–568 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Giusti, R. et al. Plasma concentration of endothelin and arterial pressure in patients with ADPKD. Contrib. Nephrol. 115, 118–121 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Wang, D. et al. Endothelium-dependent relaxation of small resistance vessels is impaired in patients with autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 11, 1371–1376 (2000).

    CAS  PubMed  Google Scholar 

  35. Wang, D. et al. Endothelial dysfunction and reduced nitric oxide in resistance arteries in autosomal dominant polycystic kidney disease. Kidney Int. 64, 1381–1388 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Al-Nimri, M. A. et al. Endothelium-derived vasoactive mediators in polycystic kidney disease. Kidney Int. 63, 1776–1784 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Merta, M. et al. Role of endothelin and nitric oxide in the pathogenesis of arterial hypertension in autosomal dominant polycystic kidney disease. Physiol. Res. 52, 433–437 (2003).

    CAS  PubMed  Google Scholar 

  38. Wang, D. et al. Asymmetric dimethylarginine and lipid peroxidation products in early autosomal dominant polycystic kidney disease. Am. J. Kidney Dis. 51, 184–191 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Kocaman, O. et al. Endothelial dysfunction and increased carotid intima–media thickness in patients with autosomal dominant polycystic kidney disease. Am. J. Kidney Dis. 43, 854–860 (2004).

    Article  PubMed  Google Scholar 

  40. Turkmen, K. et al. Coronary flow velocity reserve and carotid intima media thickness in patients with autosomal dominant polycystic kidney disease: from impaired tubules to impaired carotid and coronary arteries. Clin. J. Am. Soc. Nephrol. 3, 986–991 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Borresen, M. L. et al. Pulse wave reflection is amplified in normotensive patients with autosomal-dominant polycystic kidney disease and normal renal function. Am. J. Nephrol. 27, 240–246 (2007).

    Article  PubMed  Google Scholar 

  42. Griffin, M. D. et al. Vascular expression of polycystin. J. Am. Soc. Nephrol. 8, 616–626 (1997).

    CAS  PubMed  Google Scholar 

  43. Torres, V. E. et al. Vascular expression of polycystin-2. J. Am. Soc. Nephrol. 12, 1–9 (2001).

    CAS  PubMed  Google Scholar 

  44. Koren, M. J. et al. Relationship of left ventricular mass and geometry to morbidity and mortality in uncomplicated essential hypertension. Ann. Intern. Med. 114, 345–352 (1991).

    Article  CAS  PubMed  Google Scholar 

  45. Zeier, M. et al. Elevated blood pressure profile and left ventricular mass in children and young adults with autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 3, 1451–1457 (1993).

    CAS  PubMed  Google Scholar 

  46. Bardaji, A. et al. Cardiac involvement in autosomal dominant polycystic kidney disease: a hypertensive heart disease. Clin. Nephrol. 56, 211–220 (2002).

    Google Scholar 

  47. Cadnapaphornchai, M. A. et al. Increased left ventricular mass in children with autosomal dominant polycystic kidney disease and borderline hypertension. Kidney Int. 74, 1192–1196 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Saggar-Malik, A. et al. Left ventricular mass in normotensive subjects with autosomal dominant polycystic kidney disease. BMJ 309, 1617–1618 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bardaji, A. et al. Left ventricular mass and diastolic function in normotensive young adults with autosomal dominant polycystic kidney disease. Am. J. Kidney Dis. 32, 970–975 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Oflaz, H. et al. Biventricular diastolic dysfunction in patients with autosomal dominant polycystic kidney disease. Kidney Int. 68, 2244–2249 (2005).

    Article  PubMed  Google Scholar 

  51. Verdecchia, P. et al. Circadian blood pressure changes and left ventricular hypertrophy in essential hypertension. Circulation 81, 528–536 (1990).

    Article  CAS  PubMed  Google Scholar 

  52. Li Kam Wa, T. C. et al. Ambulatory blood pressure in hypertensive patients with autosomal dominant polycystic kidney disease. Nephrol. Dial. Transplant. 12, 2075–2080 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Valero, F. A. et al. Ambulatory blood pressure and left ventricular mass in normotensive patients with autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 10, 1020–1026 (1999).

    CAS  PubMed  Google Scholar 

  54. Martinez-Vea, A. et al. Exercise blood pressure, cardiac structure, and diastolic function in young normotensive patients with polycystic kidney disease: a prehypertensive state. Am. J. Kidney Dis. 44, 216–223 (2004).

    Article  PubMed  Google Scholar 

  55. Almeida, E. A. et al. Tissue Doppler imaging in the evaluation of left ventricular function in young adults with autosomal dominant polycystic kidney disease. Am. J. Kidney Dis. 47, 587–592 (2006).

    Article  PubMed  Google Scholar 

  56. Phillips, R. A. et al. Relation among left ventricular mass, insulin resistance, and blood pressure in nonobese subjects. J. Clin. Endocrinol. Metab. 83, 4284–4288 (1998).

    CAS  PubMed  Google Scholar 

  57. Ohya, Y. et al. Hyperinsulinemia and left ventricular geometry in a work-site population in Japan. Hypertension 27, 729–734 (1996).

    Article  CAS  PubMed  Google Scholar 

  58. Vareesangthip, K. et al. Insulin resistance in adult polycystic kidney disease. Kidney Int. 52, 503–508 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Lumiaho, A. et al. Insulin resistance is related to left ventricular hypertrophy in patients with polycystic kidney disease type 1. Am. J. Kidney Dis. 41, 1219–1224 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Rocchini, A. P. et al. Hyperinsulinemia and the aldosterone and pressor responses to angiotensin II. Hypertension 15, 861–866 (1990).

    Article  CAS  PubMed  Google Scholar 

  61. Lembo, G. et al. Abnormal sympathetic overactivity evoked by insulin in the skeletal muscle of patients with essential hypertension. J. Clin. Invest. 90, 24–29 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gharavi, A. G. et al. Deletion polymorphism of the angiotensin-converting enzyme gene is independently associated with left ventricular mass and geometric remodeling in systemic hypertension. Am. J. Cardiol. 77, 1315–1319 (1996).

    Article  CAS  PubMed  Google Scholar 

  63. Estacio, R. O. et al. Deletion polymorphism of the angiotensin-converting enzyme gene is associated with an increase in left ventricular mass in men with type 2 diabetes mellitus. Am. J. Hypertens. 12, 637–643 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Baboolal, K. et al. Association of the angiotensin I converting enzyme gene deletion polymorphism with early onset of ESRF in PKD1 adult polycystic kidney disease. Kidney Int. 52, 607–613 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Perez-Oller, L. et al. Influence of the ACE gene polymorphism in the progression of renal failure in autosomal dominant polycystic kidney disease. Am. J. Kidney Dis. 34, 273–278 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Van Dijk, M. A. et al. The ACE insertion/deletion polymorphism has no influence on progression of renal function loss in autosomal dominant polycystic kidney disease. Nephrol. Dial. Transplant. 15, 836–839 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Schiavello, T. et al. Angiotensin-converting enzyme activity and the ACE Alu polymorphism in autosomal dominant polycystic kidney disease. Nephrol. Dial. Transplant. 16, 2323–2327 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Ecder, T. et al. No effect of angiotensin-converting enzyme gene polymorphism on disease progression and left ventricular hypertrophy in autosomal dominant polycystic kidney disease. Am. J. Nephrol. 23, 466–470 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Chapman, A. B. et al. Intracranial aneurysms in autosomal dominant polycystic kidney disease. N. Engl. J. Med. 327, 916–920 (1992).

    Article  CAS  PubMed  Google Scholar 

  70. Ruggieri, P. M. et al. Occult intracranial aneurysms in polycystic kidney disease: screening with MR angiography. Radiology 191, 33–39 (1994).

    Article  CAS  PubMed  Google Scholar 

  71. Graf, S. et al. Intracranial aneurysms and dolichoectasia in autosomal dominant polycystic kidney disease. Nephrol. Dial. Transplant. 17, 819–823 (2002).

    Article  PubMed  Google Scholar 

  72. Hadimeri, H. et al. Coronary aneurysms in patients with autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 9, 837–841 (1998).

    CAS  PubMed  Google Scholar 

  73. Kanagasundaram, N. S. et al. Aneurysm of the splenic artery in a patient with autosomal dominant polycystic kidney disease. Nephrol. Dial. Transplant. 14, 183–184 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Torra, R. et al. Abdominal aortic aneurysms and autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 7, 2483–2486 (1996).

    CAS  PubMed  Google Scholar 

  75. Belz, M. M. et al. Familial clustering of ruptured intracranial aneurysms in autosomal dominant polycystic kidney disease. Am. J. Kidney Dis. 38, 770–776 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Belz, M. M. et al. Recurrence of intracranial aneurysms in autosomal-dominant polycystic kidney disease. Kidney Int. 63, 1824–1830 (2003).

    Article  PubMed  Google Scholar 

  77. Schrier, R. W. Optimal care of autosomal dominant polycystic kidney disease patients. Nephrology 11, 124–130 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Schrier, R. W. et al. Repeat imaging for intracranial aneurysms in patients with autosomal dominant polycystic kidney disease with initially negative studies: a prospective ten-year follow-up. J. Am. Soc. Nephrol. 15, 1023–1028 (2004).

    Article  PubMed  Google Scholar 

  79. Leier, C. V. et al. Cardiovascular abnormalities associated with adult polycystic kidney disease. Ann. Intern. Med. 100, 683–688 (1984).

    Article  CAS  PubMed  Google Scholar 

  80. Hossack, K. F. et al. Echocardiographic findings in autosomal dominant polycystic kidney disease. N. Engl. J. Med. 319, 907–912 (1988).

    Article  CAS  PubMed  Google Scholar 

  81. Timio, M. et al. The spectrum of cardiovascular abnormalities in autosomal dominant polycystic kidney disease: a 10-year follow-up in a five-generation kindred. Clin. Nephrol. 37, 245–251 (1992).

    CAS  PubMed  Google Scholar 

  82. Lumiaho, A. et al. Mitral valve prolapse and mitral regurgitation are common in patients with polycystic kidney disease type 1. Am. J. Kidney Dis. 38, 1208–1216 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Klahr, S. et al. Dietary protein restriction, blood pressure control, and the progression of polycystic kidney disease. J. Am. Soc. Nephrol. 5, 2037–2047 (1995).

    CAS  PubMed  Google Scholar 

  84. Maschio, G. et al. Effect of the angiotensin-converting-enzyme inhibitor benazepril on the progression of chronic renal insufficiency. N. Engl. J. Med. 334, 939–945 (1996).

    Article  CAS  PubMed  Google Scholar 

  85. Ecder, T. et al. Effect of antihypertensive therapy on renal function and urinary albumin excretion in hypertensive patients with autosomal dominant polycystic kidney disease. Am. J. Kidney Dis. 35, 427–432 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Chapman, A. B. et al. Overt proteinuria and microalbuminuria in autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 5, 1349–1354 (1994).

    CAS  PubMed  Google Scholar 

  87. Van Dijk, M. A. et al. No effect of enalapril on progression in autosomal dominant polycystic kidney disease. Nephrol. Dial. Transplant. 18, 2314–2320 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Zeltner, R. et al. Renal and cardiac effects of antihypertensive treatment with ramipril vs metoprolol in autosomal dominant polycystic kidney disease. Nephrol. Dial. Transplant. 23, 573–579 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Schrier, R. W. et al. Epidemiological study of kidney survival in autosomal dominant polycystic kidney disease. Kidney Int. 63, 678–685 (2003).

    Article  PubMed  Google Scholar 

  90. Ecder, T. et al. Progress in the blood pressure control in autosomal dominant polycystic kidney disease. Am. J. Kidney Dis. 36, 266–271 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Ecder, T. et al. Diuretics versus angiotensin-converting enzyme inhibitors in autosomal dominant polycystic kidney disease. Am. J. Nephrol. 21, 98–103 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Nutahara, K. et al. Calcium channel blocker versus angiotensin II receptor blocker in autosomal dominant polycystic kidney disease. Nephron Clin. Pract. 99, c18–c23 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Jafar, T. H. et al. The effect of angiotensin-converting enzyme inhibitors on progression of advanced polycystic kidney disease. Kidney Int. 67, 265–271 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Ecder, T. et al. Reversal of left ventricular hypertrophy with angiotensin converting enzyme inhibition in hypertensive patients with autosomal dominant polycystic kidney disease. Nephrol. Dial. Transplant. 14, 1113–1116 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. Schrier, R. et al. Cardiac and renal effects of standard versus rigorous blood pressure control in autosomal-dominant polycystic kidney disease: results of a seven-year prospective randomized study. J. Am. Soc. Nephrol. 13, 1733–1739 (2002).

    Article  PubMed  Google Scholar 

  96. Chapman, A. B. Approaches to testing new treatments in autosomal dominant polycystic kidney disease: insights from the CRISP and HALT-PKD studies. Clin. J. Am. Soc. Nephrol. 3, 1197–1204 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Schrier, R. W. Renal volume, renin–angiotensin–aldosterone system, hypertension and left ventricular hypertrophy in patients with autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. (in press).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tevfik Ecder.

Ethics declarations

Competing interests

R. W. Schrier has acted as a consultant for Amgen and Otsuka and has received grant research/support from Astellas. T. Ecder declared no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ecder, T., Schrier, R. Cardiovascular abnormalities in autosomal-dominant polycystic kidney disease. Nat Rev Nephrol 5, 221–228 (2009). https://doi.org/10.1038/nrneph.2009.13

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2009.13

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing