Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Stereotactic body radiation therapy: a novel treatment modality

A Correction to this article was published on 01 August 2010

Abstract

Stereotactic body radiation therapy (SBRT) involves the delivery of a small number of ultra-high doses of radiation to a target volume using very advanced technology and has emerged as a novel treatment modality for cancer. The role of SBRT is most important at two cancer stages—in early primary cancer and in oligometastatic disease. This modality has been used in the treatment of early-stage non-small-cell lung cancer, prostate cancer, renal-cell carcinoma, and liver cancer, and in the treatment of oligometastases in the lung, liver, and spine. A large body of evidence on the use of SBRT for the treatment of primary and metastatic tumors in various sites has accumulated over the past 10–15 years, and efficacy and safety have been demonstrated. Several prospective clinical trials of SBRT for various sites have been conducted, and several other trials are currently being planned. The results of these clinical trials will better define the role of SBRT in cancer management. This article will review the radiobiologic, technical, and clinical aspects of SBRT.

Key Points

  • Stereotactic body radiation therapy (SBRT) is a novel treatment modality that involves the high-precision delivery of very high individual doses of radiation to tumors in various extracranial sites

  • The most common indications for SBRT are nonmetastatic primary cancer and oligometastasis

  • SBRT has been used to treat patients with various primary tumors in the lung, liver, prostate, kidney and pancreas, and those with oligometastases in the lung, liver, and spine

  • Phase I and II trials of SBRT for various primary tumors and oligometastases have demonstrated feasibility, safety, and efficacy with good to excellent local control in most studies

  • Most SBRT studies, retrospective and prospective, have relatively short-term follow-up

  • Well-controlled prospective clinical trials with long-term follow-up, especially randomized trials that compare SBRT with other treatments, are needed to define the role of SBRT fully in various settings and organ sites

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SBRT plan of a 62-year-old patient with metastatic renal cell carcinoma involving the posterior elements from C3 to C5.
Figure 2: A patient with medically inoperable T2N0M0 non-small-cell lung cancer treated in the Indiana University phase II trial who demonstrated a complete pathologic response after SBRT.

Similar content being viewed by others

References

  1. Blomgren, H., Lax, I., Naslund, I. & Svanstrom, R. Stereotactic high dose fraction radiation therapy of extracranial tumors using an accelerator. Clinical experience of the first thirty-one patients. Acta Oncol. 34, 861–870 (1995).

    CAS  PubMed  Google Scholar 

  2. Timmerman, R. D. & Kavanagh, B. D. Stereotactic body radiation therapy. Curr. Probl. Cancer 29, 120–157 (2005).

    PubMed  Google Scholar 

  3. Uematsu, M. et al. Focal, high dose, and fractionated modified stereotactic radiation therapy for lung carcinoma patients: a preliminary experience. Cancer 82, 1062–1070 (1998).

    CAS  PubMed  Google Scholar 

  4. Timmerman, R. D., Kavanagh, B. D., Cho, L. C., Papiez, L. & Xing, L. Stereotactic body radiation therapy in multiple organ sites. J. Clin. Oncol. 25, 947–952 (2007).

    PubMed  Google Scholar 

  5. Norton, L. & Simon, R. The Norton–Simon hypothesis revisited. Cancer Treat. Rep. 70, 163–169 (1986).

    CAS  PubMed  Google Scholar 

  6. Park, C., Papiez, L., Zhang, S., Story, M. & Timmerman, R. D. Universal survival curve and single fraction equivalent dose: useful tools in understanding potency of ablative radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 70, 847–852 (2008).

    PubMed  Google Scholar 

  7. Wang, J. Z., Mayr, N. A. & Yuh, W. T. C. A generalized linear-quadratic formula for high-dose-rate brachytherapy and radiosurgery. Int. J. Radiat. Oncol. Biol. Phys. 69, S619–S620 (2007).

    Google Scholar 

  8. Timmerman, R. et al. Extracranial stereotactic radioablation: results of a phase I study in medically inoperable stage I non-small cell lung cancer. Chest 124, 1946–1955 (2003).

    PubMed  Google Scholar 

  9. Timmerman, R. et al. Excessive toxicity when treating central tumors in a phase II study of stereotactic body radiation therapy for medically inoperable early-stage lung cancer. J. Clin. Oncol. 24, 4833–4839 (2006).

    PubMed  Google Scholar 

  10. Cardenes, H. R. et al. Phase I trial of steroetactic body radiation therapy for primary heptaocellular carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 72, S128 (2008).

    Google Scholar 

  11. Tse, R. V. et al. Phase I study of individualized stereotactic body radiotherapy for hepatocellular carcinoma and intrahepatic cholangiocarcinoma. J. Clin. Oncol. 26, 657–664 (2008).

    PubMed  Google Scholar 

  12. Rusthoven, K. E. et al. Multi-institutional phase I/II trial of stereotactic body radiation therapy for lung metastases. J. Clin. Oncol. 27, 1579–1584 (2009).

    PubMed  Google Scholar 

  13. Rusthoven, K. E. et al. Multi-institutional phase I/II trial of stereotactic body radiation therapy for liver metastases. J. Clin. Oncol. 27, 1572–1578 (2009).

    PubMed  Google Scholar 

  14. Chang, E. L. et al. Phase I clinical evaluation of near-simultaneous computed tomographic image-guided stereotactic body radiotherapy for spinal metastases. Int. J. Radiat. Oncol. Biol. Phys. 59, 1288–1294 (2004).

    PubMed  Google Scholar 

  15. Chang, E. L. et al. Phase I/II study of stereotactic body radiotherapy for spinal metastasis and its pattern of failure. J. Neurosurg. Spine 7, 151–160 (2007).

    PubMed  Google Scholar 

  16. Wolbarst, A. B., Chin, L. M. & Svensson, G. K. Optimization of radiation therapy: integral-response of a model biological system. Int. J. Radiat. Oncol. Biol. Phys. 8, 1761–1769 (1982).

    CAS  PubMed  Google Scholar 

  17. Fuks, Z. & Kolesnick, R. Engaging the vascular component of the tumor response. Cancer Cell 8, 89–91 (2005).

    CAS  PubMed  Google Scholar 

  18. Garcia-Barros, M. et al. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 300, 1155–1159 (2003).

    CAS  Google Scholar 

  19. Lee, Y. et al. Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment. Blood 114, 589–595 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Guckenberger, M. et al. Potential of image-guidance, gating and real-time tracking to improve accuracy in pulmonary stereotactic body radiotherapy. Radiother. Oncol. 91, 288–295 (2009).

    PubMed  Google Scholar 

  21. Sonke, J. J. et al. Frameless stereotactic body radiotherapy for lung cancer using four-dimensional cone beam CT guidance. Int. J. Radiat. Oncol. Biol. Phys. 74, 567–574 (2009).

    PubMed  Google Scholar 

  22. Chang, B. K. & Timmerman, R. D. Stereotactic body radiation therapy: a comprehensive review. Am. J. Clin. Oncol. 30, 637–644 (2007).

    PubMed  Google Scholar 

  23. Lo, S. S. et al. Stereotactic body radiation therapy for nonpulmonary primary tumors. Expert Rev. Anticancer Ther. 8, 1939–1951 (2008).

    PubMed  Google Scholar 

  24. Lo, S. S. et al. Stereotactic body radiation therapy for oligometastases. Expert Rev. Anticancer Ther. 9, 621–635 (2009).

    PubMed  Google Scholar 

  25. Lo, S. S. et al. Stereotactic body radiation therapy for early-stage non-small-cell lung cancer. Expert Rev. Anticancer Ther. 8, 87–98 (2008).

    PubMed  Google Scholar 

  26. Underberg, R. W. et al. Four-dimensional CT scans for treatment planning in stereotactic radiotherapy for stage I lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 60, 1283–1290 (2004).

    PubMed  Google Scholar 

  27. McGarry, R. C., Papiez, L., Williams, M., Whitford, T. & Timmerman, R. D. Stereotactic body radiation therapy of early-stage non-small-cell lung carcinoma: phase I study. Int. J. Radiat. Oncol. Biol. Phys. 63, 1010–1015 (2005).

    PubMed  Google Scholar 

  28. Fakiris, A. J. et al. Stereotactic body radiation therapy for early-stage non-small-cell lung carcinoma: four-year results of a prospective phase II study. Int. J. Radiat. Oncol. Biol. Phys. 75, 677–682 (2009).

    PubMed  Google Scholar 

  29. Chang, J. Y. et al. Stereotactic body radiation therapy in centrally and superiorly located stage I or isolated recurrent non-small-cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 72, 967–971 (2008).

    PubMed  PubMed Central  Google Scholar 

  30. Nagata, Y. et al. Clinical outcomes of a phase I II study of 48 Gy of stereotactic body radiotherapy in 4 fractions for primary lung cancer using a stereotactic body frame. Int. J. Radiat. Oncol. Biol. Phys. 63, 1427–1431 (2005).

    PubMed  Google Scholar 

  31. Baumann, P. et al. Outcome in a prospective phase II trial of medically inoperable stage I non-small-cell lung cancer patients treated with stereotactic body radiotherapy. J. Clin. Oncol. 27, 3290–3296 (2009).

    PubMed  Google Scholar 

  32. Jaffray, D. A., Drake, D. G., Moreau, M., Martinez, A. A. & Wong, J. W. A radiographic and tomographic imaging system integrated into a medical linear accelerator for localization of bone and soft-tissue targets. Int. J. Radiat. Oncol. Biol. Phys. 45, 773–789 (1999).

    CAS  PubMed  Google Scholar 

  33. Hof, H. et al. Stereotactic single-dose radiotherapy (radiosurgery) of early stage non-small-cell lung cancer (NSCLC). Cancer 110, 148–155 (2007).

    PubMed  Google Scholar 

  34. Nyman, J., Johansson, K. A. & Hulten, U. Stereotactic hypofractionated radiotherapy for stage I non-small cell lung cancer—mature results for medically inoperable patients. Lung Cancer 51, 97–103 (2006).

    PubMed  Google Scholar 

  35. Onishi, H. et al. Stereotactic hypofractionated high-dose irradiation for stage I nonsmall cell lung carcinoma: clinical outcomes in 245 subjects in a Japanese multiinstitutional study. Cancer 101, 1623–1631 (2004).

    PubMed  Google Scholar 

  36. Zimmermann, F. B. et al. Stereotactic hypofractionated radiotherapy in stage I (T1–2 N0 M0) non-small-cell lung cancer (NSCLC). Acta Oncol. 45, 796–801 (2006).

    PubMed  Google Scholar 

  37. Nagata, Y. et al. Clinical outcomes of 3D conformal hypofractionated single high-dose radiotherapy for one or two lung tumors using a stereotactic body frame. Int. J. Radiat. Oncol. Biol. Phys. 52, 1041–1046 (2002).

    PubMed  Google Scholar 

  38. Uematsu, M. et al. Computed tomography-guided frameless stereotactic radiotherapy for stage I non-small cell lung cancer: a 5-year experience. Int. J. Radiat. Oncol. Biol. Phys. 51, 666–670 (2001).

    CAS  PubMed  Google Scholar 

  39. Abrams, R. A., Pajak, T. F., Haulk, T. L., Flam, M. & Asbell, S. O. Survival results among patients with α-fetoprotein-positive, unresectable hepatocellular carcinoma: analysis of three sequential treatments of the RTOG and Johns Hopkins Oncology Center. Cancer J. Sci. Am. 4, 178–184 (1998).

    CAS  PubMed  Google Scholar 

  40. Dawson, L. A. et al. Escalated focal liver radiation and concurrent hepatic artery fluorodeoxyuridine for unresectable intrahepatic malignancies. J. Clin. Oncol. 18, 2210–2218 (2000).

    CAS  PubMed  Google Scholar 

  41. Blomgren, H. et al. Radiosurgery for tumors in the body: clinical experience using a new method. J. Radiosurg. 1, 63–74 (1998).

    Google Scholar 

  42. Wulf, J. et al. Stereotactic radiotherapy of primary liver cancer and hepatic metastases. Acta Oncol. 45, 838–847 (2006).

    PubMed  Google Scholar 

  43. Choi, B. O. et al. Fractionated stereotactic radiotherapy in patients with primary hepatocellular carcinoma. Jpn J. Clin. Oncol. 36, 154–158 (2006).

    PubMed  Google Scholar 

  44. Mendez Romero, A. et al. Stereotactic body radiation therapy for primary and metastatic liver tumors: a single institution phase I–II study. Acta Oncol. 45, 831–837 (2006).

    PubMed  Google Scholar 

  45. Kavanagh, B. D., McGarry, R. C. & Timmerman, R. D. Extracranial radiosurgery (stereotactic body radiation therapy) for oligometastases. Semin. Radiat. Oncol. 16, 77–84 (2006).

    PubMed  Google Scholar 

  46. Nakagawa, K., Aoki, Y., Tago, M., Terahara, A. & Ohtomo, K. Megavoltage CT-assisted stereotactic radiosurgery for thoracic tumors: original research in the treatment of thoracic neoplasms. Int. J. Radiat. Oncol. Biol. Phys. 48, 449–457 (2000).

    CAS  PubMed  Google Scholar 

  47. Wulf, J. et al. Stereotactic radiotherapy of targets in the lung and liver. Strahlenther Onkol. 177, 645–655 (2001).

    CAS  PubMed  Google Scholar 

  48. Wulf, J. et al. Stereotactic radiotherapy for primary lung cancer and pulmonary metastases: a noninvasive treatment approach in medically inoperable patients. Int. J. Radiat. Oncol. Biol. Phys. 60, 186–196 (2004).

    PubMed  Google Scholar 

  49. Hara, R. et al. Stereotactic single high dose irradiation of lung tumors under respiratory gating. Radiother. Oncol. 63, 159–163 (2002).

    PubMed  Google Scholar 

  50. Lee, S. W. et al. Stereotactic body frame based fractionated radiosurgery on consecutive days for primary or metastatic tumors in the lung. Lung Cancer 40, 309–315 (2003).

    PubMed  Google Scholar 

  51. Hof, H., Hoess, A., Oetzel, D., Debus, J. & Herfarth, K. Stereotactic single-dose radiotherapy of lung metastases. Strahlenther Onkol. 183, 673–678 (2007).

    PubMed  Google Scholar 

  52. Okunieff, P. et al. Stereotactic body radiation therapy (SBRT) for lung metastases. Acta Oncol. 45, 808–817 (2006).

    PubMed  Google Scholar 

  53. Norihisa, Y. et al. Stereotactic body radiotherapy for oligometastatic lung tumors. Int. J. Radiat. Oncol. Biol. Phys. 72, 398–403 (2008).

    PubMed  Google Scholar 

  54. Guckenberger, M. et al. Dose–response relationship for image-guided stereotactic body radiotherapy of pulmonary tumors: relevance of 4D dose calculation. Int. J. Radiat. Oncol. Biol. Phys. 74, 47–54 (2009).

    PubMed  Google Scholar 

  55. Ernst-Stecken, A., Lambrecht, U., Mueller, R., Sauer, R. & Grabenbauer, G. Hypofractionated stereotactic radiotherapy for primary and secondary intrapulmonary tumors: first results of a phase I/II study. Strahlenther Onkol. 182, 696–702 (2006).

    PubMed  PubMed Central  Google Scholar 

  56. Le, Q. T. et al. Results of a phase I dose-escalation study using single-fraction stereotactic radiotherapy for lung tumors. J. Thorac. Oncol. 1, 802–809 (2006).

    PubMed  Google Scholar 

  57. Sato, M., Uematsu, M. & Yamamoto, F. Feasibility of frameless stereotactic high-dose radiation therapy for primary and metastatic liver cancer. J. Radiosurg. 1, 233–238 (1998).

    Google Scholar 

  58. Katz, A. W. et al. Hypofractionated stereotactic body radiation therapy (SBRT) for limited hepatic metastases. Int. J. Radiat. Oncol. Biol. Phys. 67, 793–798 (2007).

    PubMed  Google Scholar 

  59. Wada, H., Takai, Y., Nemoto, K. & Yamada, S. Univariate analysis of factors correlated with tumor control probability of three-dimensional conformal hypofractionated high-dose radiotherapy for small pulmonary or hepatic tumors. Int. J. Radiat. Oncol. Biol. Phys. 58, 1114–1120 (2004).

    PubMed  Google Scholar 

  60. Gunvén, P., Blomgren, H., Lax, I. & Levitt, S. H. Curative stereotactic body radiotherapy for liver malignancy. Med. Oncol. 26, 327–334 (2008).

    PubMed  Google Scholar 

  61. Herfarth, K. K. et al. Stereotactic single-dose radiation therapy of liver tumors: results of a phase I/II trial. J. Clin. Oncol. 19, 164–170 (2001).

    CAS  PubMed  Google Scholar 

  62. Lee, M. T. et al. Phase I study of individualized stereotactic body radiotherapy of liver metastases. J. Clin. Oncol. 27, 1585–1591 (2009).

    PubMed  Google Scholar 

  63. Lo, S. S. et al. Stereotactic radiosurgery and radiation therapy for spinal tumors. Expert Rev. Neurother. 7, 85–93 (2007).

    PubMed  Google Scholar 

  64. Sahgal, A., Larson, D. A. & Chang, E. L. Stereotactic body radiosurgery for spinal metastases: a critical review. Int. J. Radiat. Oncol. Biol. Phys. 71, 652–665 (2008).

    PubMed  Google Scholar 

  65. Ryu, S. et al. Image-guided and intensity-modulated radiosurgery for patients with spinal metastasis. Cancer 97, 2013–2018 (2003).

    PubMed  Google Scholar 

  66. Ryu, S., Rock, J., Rosenblum, M. & Kim, J. H. Patterns of failure after single-dose radiosurgery for spinal metastasis. J. Neurosurg. 101 (Suppl. 3), 402–405 (2004).

    PubMed  Google Scholar 

  67. Rock, J. P. et al. Postoperative radiosurgery for malignant spinal tumors. Neurosurgery 58, 891–898 (2006).

    PubMed  Google Scholar 

  68. Gerszten, P. C. et al. Stereotactic radiosurgery for spinal metastases from renal cell carcinoma. J. Neurosurg. Spine 3, 288–295 (2005).

    PubMed  Google Scholar 

  69. Gerszten, P. C., Burton, S. A., Ozhasoglu, C. & Welch, W. C. Radiosurgery for spinal metastases: clinical experience in 500 cases from a single institution. Spine 32, 193–199 (2007).

    PubMed  Google Scholar 

  70. Gerszten, P. C., Burton, S. A., Quinn, A. E., Agarwala, S. S. & Kirkwood, J. M. Radiosurgery for the treatment of spinal melanoma metastases. Stereotact. Funct. Neurosurg. 83, 213–221 (2005).

    PubMed  Google Scholar 

  71. Gerszten, P. C. et al. Single-fraction radiosurgery for the treatment of spinal breast metastases. Cancer 104, 2244–2254 (2005).

    PubMed  Google Scholar 

  72. Gerszten, P. C. et al. Combination kyphoplasty and spinal radiosurgery: a new treatment paradigm for pathological fractures. J. Neurosurg. Spine 3, 296–301 (2005).

    PubMed  Google Scholar 

  73. Gibbs, I. C. et al. Image-guided robotic radiosurgery for spinal metastases. Radiother. Oncol. 82, 185–190 (2007).

    PubMed  Google Scholar 

  74. Yamada, Y. et al. Multifractionated image-guided and stereotactic intensity-modulated radiotherapy of paraspinal tumors: a preliminary report. Int. J. Radiat. Oncol. Biol. Phys. 62, 53–61 (2005).

    PubMed  Google Scholar 

  75. Sahgal, A., Chuang, C. & Larson, D. Proximity of spinous/paraspinous radiosurgery metastatic targets to the spinal cord versus risk of local failure. Int. J. Radiat. Oncol. Biol. Phys. 69, S243 (2007).

    Google Scholar 

  76. Yamada, Y. et al. High-dose, single-fraction image-guided intensity-modulated radiotherapy for metastatic spinal lesions. Int. J. Radiat. Oncol. Biol. Phys. 71, 484–490 (2008).

    PubMed  Google Scholar 

  77. Gerszten, P. C., Burton, S. A., Ozhasoglu, C., McCue, K. J. & Quinn, A. E. Radiosurgery for benign intradural spinal tumors. Neurosurgery 62, 887–896 (2008).

    PubMed  Google Scholar 

  78. Dodd, R. L. et al. CyberKnife radiosurgery for benign intradural extramedullary spinal tumors. Neurosurgery 58, 674–685 (2006).

    PubMed  Google Scholar 

  79. Sahgal, A. et al. Image-guided robotic stereotactic body radiotherapy for benign spinal tumors: the University of California San Francisco preliminary experience. Technol. Cancer Res. Treat. 6, 595–604 (2007).

    CAS  PubMed  Google Scholar 

  80. Madsen, B. L. et al. Stereotactic hypofractionated accurate radiotherapy of the prostate (SHARP), 33.5 Gy in five fractions for localized disease: first clinical trial results. Int. J. Radiat. Oncol. Biol. Phys. 67, 1099–1105 (2007).

    Google Scholar 

  81. King, C. R. et al. Stereotactic body radiotherapy for localized prostate cancer: interim results of a prospective phase II clinical trial. Int. J. Radiat. Oncol. Biol. Phys. 73, 1043–1048 (2009).

    Google Scholar 

  82. Ponsky, L. E., Mahadevan, A., Gill, I. S., Djemil, T. & Novick, A. C. Renal radiosurgery: initial clinical experience with histological evaluation. Surg. Innov. 14, 265–269 (2007).

    PubMed  Google Scholar 

  83. Beitler, J. J., Makara, D., Silverman, P. & Lederman, G. Definitive, high-dose-per-fraction, conformal, stereotactic external radiation for renal cell carcinoma. Am. J. Clin. Oncol. 27, 646–648 (2004).

    PubMed  Google Scholar 

  84. Wersall, P. J. et al. Extracranial stereotactic radiotherapy for primary and metastatic renal cell carcinoma. Radiother. Oncol. 77, 88–95 (2005).

    PubMed  Google Scholar 

  85. Svedman, C. et al. A prospective phase II trial of using extracranial stereotactic radiotherapy in primary and metastatic renal cell carcinoma. Acta Oncol. 45, 870–875 (2006).

    PubMed  Google Scholar 

  86. Koong, A. C. et al. Phase I study of stereotactic radiosurgery in patients with locally advanced pancreatic cancer. Int. J. Radiat. Oncol. Biol. Phys. 58, 1017–1021 (2004).

    PubMed  Google Scholar 

  87. Koong, A. C. et al. Phase II study to assess the efficacy of conventionally fractionated radiotherapy followed by a stereotactic radiosurgery boost in patients with locally advanced pancreatic cancer. Int. J. Radiat. Oncol. Biol. Phys. 63, 320–323 (2005).

    PubMed  Google Scholar 

  88. Schellenberg, D. et al. Gemcitabine chemotherapy and single-fraction stereotactic body radiotherapy for locally advanced pancreatic cancer. Int. J. Radiat. Oncol. Biol. Phys. 72, 678–686 (2008).

    CAS  PubMed  Google Scholar 

  89. Hoyer, M. et al. Phase II study on stereotactic radiotherapy of locally advanced pancreatic carcinoma. Radiother. Oncol. 76, 48–53 (2005).

    PubMed  Google Scholar 

  90. Borst, G. R. et al. Radiation pneumonitis in patients treated for malignant pulmonary lesions with hypofractionated radiation therapy. Radiother. Oncol. 91, 307–313 (2009).

    PubMed  Google Scholar 

  91. Dunlap, N. E. et al. Chest wall volume receiving >30 Gy predicts risk of severe pain and/or rib fracture after lung stereotactic body radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. doi:10.1016/j.ijrobp.2009.02.027.

    Google Scholar 

  92. Pettersson, N., Nyman, J. & Johansson, K. A. Radiation-induced rib fractures after hypofractionated stereotactic body radiation therapy of non-small cell lung cancer: a dose- and volume-response analysis. Radiother. Oncol. 91, 360–368 (2009).

    PubMed  Google Scholar 

  93. Hoppe, B. S. et al. Acute skin toxicity following stereotactic body radiation therapy for stage I non-small-cell lung cancer: who's at risk? Int. J. Radiat. Oncol. Biol. Phys. 72, 1283–1286 (2008).

    PubMed  Google Scholar 

  94. Forquer, J. A. et al. Brachial plexopathy from stereotactic body radiotherapy in early-stage NSCLC: dose-limiting toxicity in apical tumor sites. Radiother. Oncol. doi:10.1016/j.radonc.2009.04.018.

    PubMed  Google Scholar 

  95. Laufer, I., Rose, P., Lis, E., Bilsky, M. H. & Yamada, Y. An analysis of risk factors for vertebral body fracture following high-dose single-fraction image-guided intensity modulated radiotherapy (IG IMRT) of spinal metastases. Int. J. Radiat. Oncol. Biol. Phys. 72, S52 (2008).

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ms Sharon Rhymaun-Croyle from Ohio State University, OH, USA, for her help in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon S. Lo.

Ethics declarations

Competing interests

R. Timmerman receives grant/research support from Elekta Oncology and Varian Medical Systems. The other authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lo, S., Fakiris, A., Chang, E. et al. Stereotactic body radiation therapy: a novel treatment modality. Nat Rev Clin Oncol 7, 44–54 (2010). https://doi.org/10.1038/nrclinonc.2009.188

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2009.188

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing