Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Constrictive pericarditis—a curable diastolic heart failure

An Erratum to this article was published on 06 October 2015

This article has been updated

Key Points

  • The most-common aetiologies of constrictive pericarditis in developed countries are cardiac surgery and idiopathic pericarditis, whereas in developing countries with high tuberculosis prevalence, tuberculous pericarditis is most common

  • Constrictive pericarditis should be suspected in any patient for whom the severity of heart failure is disproportional to the degree of myocardial dysfunction

  • Echocardiography is the initial investigation of choice, with cardiac MRI and CT being alternative or complementary imaging modalities

  • Cardiac catheterization can be used when echocardiography, cardiac MRI, and CT provide equivocal results or when a mixed cardiac pathology requires further evaluation

  • Patients with ongoing pericardial inflammation should initially receive anti-inflammatory therapy; those with noncalcific tuberculous constrictive pericarditis should be treated with antituberculous antimicrobial and steroid therapy to reverse the condition

  • Pericardiectomy is curative with symptomatic improvement in most patients, but some develop late recurrence of symptoms; mortality is highest in patients with radiation pericarditis and associated myocardial disease

Abstract

Constrictive pericarditis can result from a stiff pericardium that prevents satisfactory diastolic filling. The distinction between constrictive pericarditis and other causes of heart failure, such as restrictive cardiomyopathy, is important because pericardiectomy can cure constrictive pericarditis. Diagnosis of constrictive pericarditis is based on characteristic haemodynamic and anatomical features determined using echocardiography, cardiac catheterization, cardiac MRI, and CT. The Mayo Clinic echocardiography and cardiac catheterization haemodynamic diagnostic criteria for constrictive pericarditis are based on the unique features of ventricular interdependence and dissociation of intrathoracic and intracardiac pressures seen when the pericardium is constricted. A complete pericardiectomy can restore satisfactory diastolic filling by removing the constrictive pericardium in patients with constrictive pericarditis. However, if inflammation of the pericardium is the predominant constrictive mechanism, anti-inflammatory therapy might alleviate this transient condition without a need for surgery. Early diagnosis of constrictive pericarditis is, therefore, of paramount clinical importance. An improved understanding of how constrictive pericarditis develops after an initiating event is critical to prevent this diastolic heart failure. In this Review, we discuss the aetiology, pathophysiology, and diagnosis of constrictive pericarditis, with a specific emphasis on how to differentiate this disease from conditions with similar clinical presentations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathology findings in constrictive pericarditis.
Figure 2: Ventricular interdependence and dissociation of intrathoracic and intracardiac pressures in patients with constrictive pericarditis.
Figure 3: Changes in left ventricular strain in a patient with constrictive pericarditis.
Figure 4: Pericardial calcification in constrictive pericarditis.
Figure 5: Doppler echocardiography diagnosis of constrictive pericarditis.
Figure 6: Echocardiography diagnostic criteria algorithm for constrictive pericarditis.
Figure 7: Cardiac catheterization in constrictive pericarditis to differentiate between restrictive cardiomyopathy and constrictive pericarditis.159
Figure 8: Intraoperative photographs during radical pericardiectomy.

Similar content being viewed by others

Change history

  • 06 October 2015

    In the version of this article initially published online and in print, the images in Figure 2c depicting interventricular septum movements and blood flow velocities during inspiration and expiration were swapped. This error has been corrected for the HTML and PDF versions of the article.

References

  1. Melduni, R. M. in Mayo Clinic Cardiology: Concise Textbook (eds Murphy, J. G. & Lloyd, M. A.) 709–724 (Oxford University Press, 2013).

    Google Scholar 

  2. Khandaker, M. H. et al. Pericardial disease: diagnosis and management. Mayo Clin. Proc. 85, 572–593 (2010).

    PubMed  PubMed Central  Google Scholar 

  3. Little, W. C. & Freeman, G. L. Pericardial disease. Circulation 113, 1622–1632 (2006).

    PubMed  Google Scholar 

  4. Schwefer, M., Aschenbach, R., Heidemann, J., Mey, C. & Lapp, H. Constrictive pericarditis, still a diagnostic challenge: comprehensive review of clinical management. Eur. J. Cardiothorac. Surg. 36, 502–510 (2009).

    PubMed  Google Scholar 

  5. Troughton, R. W., Asher, C. R. & Klein, A. L. Pericarditis. Lancet 363, 717–727 (2004).

    PubMed  Google Scholar 

  6. Maisch, B. et al. Guidelines on the diagnosis and management of pericardial diseases executive summary; the task force on the diagnosis and management of pericardial diseases of the European Society of Cardiology. Eur. Heart J. 25, 587–610 (2004).

    PubMed  Google Scholar 

  7. Ling, L. H. et al. Constrictive pericarditis in the modern era: evolving clinical spectrum and impact on outcome after pericardiectomy. Circulation 100, 1380–1386 (1999).

    CAS  PubMed  Google Scholar 

  8. Ling, L. H. et al. Detection of constrictive pericarditis: a single-centre experience of 523 surgically confirmed cases [abstract]. J. Am. Coll. Cardiol. 53 (Suppl. 1), A176 (2009).

    Google Scholar 

  9. McCaughan, B. C. et al. Early and late results of pericardiectomy for constrictive pericarditis. J. Thorac. Cardiovasc. Surg. 89, 340–350 (1985).

    CAS  PubMed  Google Scholar 

  10. Fowler, N. O. Constrictive pericarditis: its history and current status. Clin. Cardiol. 18, 341–350 (1995).

    CAS  PubMed  Google Scholar 

  11. Im, E. et al. The incidence and clinical outcome of constrictive physiology after coronary artery bypass graft surgery. J. Am. Coll. Cardiol. 61, 2110–2112 (2013).

    PubMed  Google Scholar 

  12. Matsuyama, K. et al. Clinical characteristics of patients with constrictive pericarditis after coronary bypass surgery. Jpn Circ. J. 65, 480–482 (2001).

    CAS  PubMed  Google Scholar 

  13. Bashi, V. V. et al. Early and late results of pericardiectomy in 118 cases of constrictive pericarditis. Thorax 43, 637–641 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Chowdhury, U. K. et al. Pericardiectomy for constrictive pericarditis: a clinical, echocardiographic, and hemodynamic evaluation of two surgical techniques. Ann. Thorac. Surg. 81, 522–529 (2006).

    PubMed  Google Scholar 

  15. Chen, R. F. & Lai, C. P. Clinical characteristics and treatment of constrictive pericarditis in Taiwan. Circ. J. 69, 458–460 (2005).

    PubMed  Google Scholar 

  16. Ghavidel, A. A., Gholampour, M., Kyavar, M., Mirmesdagh, Y. & Tabatabaie, M. B. Constrictive pericarditis treated by surgery. Tex. Heart Inst. J. 39, 199–205 (2012).

    PubMed  PubMed Central  Google Scholar 

  17. Kang, S. H. et al. Prognostic predictors in pericardiectomy for chronic constrictive pericarditis. J. Thorac. Cardiovasc. Surg. 147, 598–605 (2013).

    PubMed  Google Scholar 

  18. Lin, Y., Zhou, M., Xiao, J., Wang, B. & Wang, Z. Treating constrictive pericarditis in a Chinese single-center study: a five-year experience. Ann. Thorac. Surg. 94, 1235–1240 (2012).

    PubMed  Google Scholar 

  19. Yetkin, U. et al. Recent surgical experience in chronic constrictive pericarditis. Tex. Heart Inst. J. 30, 27–30 (2003).

    PubMed  PubMed Central  Google Scholar 

  20. Syed, F. F. & Sani, M. U. Recent advances in HIV-associated cardiovascular diseases in Africa. Heart 99, 1146–1153 (2013).

    PubMed  Google Scholar 

  21. Klein, A. L. et al. American Society of Echocardiography clinical recommendations for multimodality cardiovascular imaging of patients with pericardial disease: endorsed by the Society for Cardiovascular Magnetic Resonance and Society of Cardiovascular Computed Tomography. J. Am. Soc. Echocardiogr. 26, 965–1012.e15 (2013).

    PubMed  Google Scholar 

  22. Dines, D. E., Edwards, J. E. & Burchell, H. B. Myocardial atrophy in constrictive pericarditis. Proc. Staff Meet. Mayo Clin. 33, 93–99 (1958).

    CAS  PubMed  Google Scholar 

  23. Clifford, C. P. et al. Tuberculous pericarditis with rapid progression to constriction. Prompt diagnosis and treatment are needed. BMJ 307, 1052–1054 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bertog, S. C. et al. Constrictive pericarditis: etiology and cause-specific survival after pericardiectomy. J. Am. Coll. Cardiol. 43, 1445–1452 (2004).

    Google Scholar 

  25. Ling, L. H. et al. Calcific constrictive pericarditis: is it still with us? Ann. Intern. Med. 132, 444–450 (2000).

    CAS  PubMed  Google Scholar 

  26. Nkere, U. U., Whawell, S. A., Thompson, E. M., Thompson, J. N. & Taylor, K. M. Changes in pericardial morphology and fibrinolytic activity during cardiopulmonary bypass. J. Thorac. Cardiovasc. Surg. 106, 339–345 (1993).

    CAS  PubMed  Google Scholar 

  27. Oh, K. Y., Shimizu, M., Edwards, W. D., Tazelaar, H. D. & Danielson, G. K. Surgical pathology of the parietal pericardium: a study of 344 cases (1993–1999). Cardiovasc. Pathol. 10, 157–168 (2001).

    CAS  PubMed  Google Scholar 

  28. Talreja, D. R. et al. Constrictive pericarditis in 26 patients with histologically normal pericardial thickness. Circulation 108, 1852–1857 (2003).

    PubMed  Google Scholar 

  29. Oh, J. K., Hatle, L. K., Mulvagh, S. L. & Tajik, A. J. Transient constrictive pericarditis: diagnosis by two-dimensional Doppler echocardiography. Mayo Clin. Proc. 68, 1158–1164 (1993).

    CAS  PubMed  Google Scholar 

  30. Mayosi, B. M. et al. Mortality in patients treated for tuberculous pericarditis in sub-Saharan Africa. S. Afr. Med. J. 98, 36–40 (2008).

    PubMed  Google Scholar 

  31. Ntsekhe, M. et al. HIV infection is associated with a lower incidence of constriction in presumed tuberculous pericarditis: a prospective observational study. PLoS ONE 3, e2253 (2008).

    PubMed  PubMed Central  Google Scholar 

  32. Bartus, K. et al. Percutaneous left atrial appendage suture ligation using the LARIAT device in patients with atrial fibrillation: initial clinical experience. J. Am. Coll. Cardiol. 62, 108–118 (2013).

    PubMed  Google Scholar 

  33. Jahaveri, A., Glassberg, H. L., Acker, M. A., Callans, D. J. & Goldberg, L. R. Constrictive pericarditis presenting as a late complication of epicardial ventricular tachycardia ablation. Circ. Heart Fail. 5, e22–e23 (2012).

    Google Scholar 

  34. George, T. J. et al. Contemporary etiologies, risk factors, and outcomes after pericardiectomy. Ann. Thorac. Surg. 94, 445–451 (2012).

    PubMed  PubMed Central  Google Scholar 

  35. Szabo, G. et al. Constrictive pericarditis: risks, aetiologies and outcomes after total pericardiectomy: 24 years of experience. Eur. J. Cardiothorac. Surg. 44, 1023–1028 (2013).

    PubMed  Google Scholar 

  36. Oreto, L. et al. Contemporary clinical spectrum of constrictive pericarditis: a 10-year experience. Int. J. Cardiol. 163, 339–341 (2013).

    PubMed  Google Scholar 

  37. Chowdhury, U. K., Seth, S. & Reddy, S. M. Pericardiectomy for chronic constrictive pericarditis via left anterolateral thoracotomy. Oper. Tech. Thorac. Cardiovasc. Surg. 13, 14–25 (2008).

    Google Scholar 

  38. Koruth, J., Koster, N., Hunter, C. & Mooss, A. Images in cardiovascular medicine. Transient constrictive pericarditis with videographic display of Kussmaul sign. Circulation 118, e683–e687 (2008).

    PubMed  Google Scholar 

  39. Nakao, K. et al. Transient constrictive pericarditis diagnosed by cardiac magnetic resonance, 67Ga scintigraphy, and positron emission tomography. Int. J. Cardiol. 137, e70–e72 (2009).

    PubMed  Google Scholar 

  40. Imazio, M. et al. Risk of constrictive pericarditis after acute pericarditis. Circulation 124, 1270–1275 (2011).

    PubMed  Google Scholar 

  41. Imazio, M. et al. Prognosis of idiopathic recurrent pericarditis as determined from previously published reports. Am. J. Cardiol. 100, 1026–1028 (2007).

    PubMed  Google Scholar 

  42. Liu, X. et al. Pleiotropic effects of transforming growth factor-β1 on pericardial interstitial cells. Implications for fibrosis and calcification in idiopathic constrictive pericarditis. J. Am. Coll. Cardiol. 57, 1634–1635 (2011).

    PubMed  Google Scholar 

  43. Ng, T. T., Strang, J. I. & Wilkins, E. G. Humoral response to mycobacterial heat shock proteins in patients with constrictive pericarditis caused by tuberculosis and its implications for pathogenesis. Clin. Diagn. Lab. Immunol. 1, 552–555 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ntsekhe, M. et al. Prevalence, hemodynamics, and cytokine profile of effusive-constrictive pericarditis in patients with tuberculous pericardial effusion. PLoS ONE 8, e77532 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ntsekhe, M. et al. Scientific letter: Ac-SDKP (N-acetyl-seryl-aspartyl-lysyl-proline) and Galectin-3 levels in tuberculous pericardial effusion: implications for pathogenesis and prevention of pericardial constriction. Heart 98, 1326–1328 (2012).

    PubMed  PubMed Central  Google Scholar 

  46. Marcu, C. B., Caracciolo, E. & Donohue, T. Rapid progression of pericardial calcification in a patient with end-stage renal disease. Catheter. Cardiovasc. Interv. 65, 43–46 (2005).

    PubMed  Google Scholar 

  47. Khoueiry, Z. et al. Could heart rate play a role in pericardial inflammation? Med. Hypotheses 79, 512–515 (2012).

    PubMed  Google Scholar 

  48. Killian, D. M., Furiasse, J. G., Scanlon, P. J., Loeb, H. S. & Sullivan, H. J. Constrictive pericarditis after cardiac surgery. Am. Heart J. 118, 563–568 (1989).

    CAS  PubMed  Google Scholar 

  49. Hansen, A. T., Eskildsen, P. & Gotzsche, H. Pressure curves from the right auricle and the right ventricle in chronic constrictive pericarditis. Circulation 3, 881–888 (1951).

    CAS  PubMed  Google Scholar 

  50. Kloster, F. E. et al. Hemodynamic studies following pericardiectomy for constrictive pericarditis. Circulation 32, 415–424 (1965).

    CAS  PubMed  Google Scholar 

  51. Dayem, M. K., Wasfi, F. M., Bentall, H. H., Goodwin, J. F. & Cleland, W. P. Investigation and treatment of constrictive pericarditis. Thorax 22, 242–252 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Shabetai, R., Fowler, N. O. & Guntheroth, W. G. The hemodynamics of cardiac tamponade and constrictive pericarditis. Am. J. Cardiol. 26, 480–489 (1970).

    CAS  PubMed  Google Scholar 

  53. Anand, I. S. et al. Pathogenesis of edema in constrictive pericarditis. Studies of body water and sodium, renal function, hemodynamics, and plasma hormones before and after pericardiectomy. Circulation 83, 1880–1887 (1991).

    CAS  PubMed  Google Scholar 

  54. Oh, J. K. et al. Diagnostic role of Doppler echocardiography in constrictive pericarditis. J. Am. Coll. Cardiol. 23, 154–162 (1994).

    CAS  PubMed  Google Scholar 

  55. Nishimura, R. A. Constrictive pericarditis in the modern era: a diagnostic dilemma. Heart 86, 619–623 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Talreja, D. R., Nishimura, R. A., Oh, J. K. & Holmes, D. R. Constrictive pericarditis in the modern era: novel criteria for diagnosis in the cardiac catheterization laboratory. J. Am. Coll. Cardiol. 51, 315–319 (2008).

    PubMed  Google Scholar 

  57. Morgan, B. C., Guntheroth, W. G. & Dillard, D. H. Relationship of pericardial to pleural pressure during quiet respiration and cardiac taponade. Circ. Res. 16, 493–498 (1965).

    CAS  PubMed  Google Scholar 

  58. Santamore, W. P., Bartlett, R., Van Buren, S. J., Dowd, M. K. & Kutcher, M. A. Ventricular coupling in constrictive pericarditis. Circulation 74, 597–602 (1986).

    CAS  PubMed  Google Scholar 

  59. Reinmüller, R. et al. CT and MR evaluation of pericardial constriction: a new diagnostic and therapeutic concept. J. Thorac. Imaging 8, 108–121 (1993).

    PubMed  Google Scholar 

  60. Anderson, H. J. Tuberculous pericarditis. Br. J. Tuberc. Dis. Chest 48, 12–23 (1954).

    CAS  PubMed  Google Scholar 

  61. Tugcu, A., Yildirimturk, O., Duran, C. & Aytekin, S. Constrictive pericarditis impressing and narrowing the ascending aorta. Echocardiography 25, 768–771 (2008).

    PubMed  Google Scholar 

  62. Barros, J. L. & Pérez Gómez, F. Pulmonary stenosis due to external compression by a pericardial band. Br. Heart J. 29, 947–949 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Nigri, A. et al. Pulmonary trunk stenosis due to constriction by a pericardial band. Am. Heart J. 114, 448–450 (1987).

    CAS  PubMed  Google Scholar 

  64. Chesler, E., Mitha, A. S., Matisonn, R. E. & Rogers, M. N. Subpulmonic stenosis as a result of noncalcific constrictive pericarditis. Chest 69, 425–427 (1976).

    CAS  PubMed  Google Scholar 

  65. Tartarini, G. et al. Right ventricular outflow obstructions due to a fibrocalcified pericardial band. J. Nucl. Med. Allied Sci. 28, 47–52 (1984).

    CAS  PubMed  Google Scholar 

  66. Chien, S. J., Liang, C. D., Ko, S. F. & Chang, J. P. Idiopathic calcific constrictive pericarditis causing pulmonary stenosis associated with a ventricular septal defect mimicking tetralogy of Fallot. J. Clin. Ultrasound 31, 222–225 (2003).

    PubMed  Google Scholar 

  67. Hamdulay, Z. A. et al. Localized pericardial constriction resulting in a “dumbbell” heart. Ann. Thorac. Surg. 83, 2222–2224 (2007).

    PubMed  Google Scholar 

  68. Zhu, P., Yang, Q. & Qiang, H. The ring around the heart. Eur. J. Cardiothorac. Surg. 42, 377 (2012).

    PubMed  Google Scholar 

  69. Parakh, N., Chaturvedi, V., Garg, D. & Tyagi, S. Calcification ring in the atrioventricular groove. Postgrad. Med. J. 86, 382 (2010).

    CAS  PubMed  Google Scholar 

  70. Nagata, T., Hiraoka, A., Chikazawa, G. & Yoshitaka, H. Constrictive pericarditis with ringed calcification along the atrioventricular groove. J. Card. Surg. 27, 363–364 (2012).

    PubMed  Google Scholar 

  71. Bhagia, S. T., Patel, A. R. & Reul, G. J. Coronary obstruction by a calcific pericardial ring. Ann. Thorac. Surg. 74, 595–597 (2002).

    PubMed  Google Scholar 

  72. Kerr, G. D. Protein losing enteropathy and villus lymphangiectasia in constrictive pericarditis with ring constriction of inferior vena cava. N. Z. Med. J. 73, 144–147 (1971).

    CAS  PubMed  Google Scholar 

  73. Ehl, N. F. et al. Constrictive pericarditis presenting as a large mediastinal mass causing functional tricuspid and pulmonary stenosis. Circulation 124, e487–e491 (2011).

    PubMed  Google Scholar 

  74. Reuss, C. S. et al. Using mitral 'annulus reversus' to diagnose constrictive pericarditis. Eur. J. Echocardiogr. 10, 372–375 (2009).

    PubMed  Google Scholar 

  75. Choi, J. H. et al. Mitral and tricuspid annular velocities in constrictive pericarditis and restrictive cardiomyopathy: correlation with pericardial thickness on computed tomography. JACC Cardiovasc. Imaging 4, 567–575 (2011).

    PubMed  Google Scholar 

  76. Lu, X. F., Wang, X. F., Cheng, T. O., Xie, M. X. & Lu, Q. Diagnosis of constrictive pericarditis by quantitative tissue Doppler imaging. Int. J. Cardiol. 137, 22–28 (2009).

    PubMed  Google Scholar 

  77. Ha, J. W. et al. Annulus paradoxus: transmitral flow velocity to mitral annular velocity ratio is inversely proportional to pulmonary capillary wedge pressure in patients with constrictive pericarditis. Circulation 104, 976–978 (2001).

    CAS  PubMed  Google Scholar 

  78. Ha, J. W. et al. Differentiation of constrictive pericarditis from restrictive cardiomyopathy using mitral annular velocity by tissue Doppler echocardiography. Am. J. Cardiol. 94, 316–319 (2004).

    PubMed  Google Scholar 

  79. Ha, J. W., Oh, J. K., Ommen, S. R., Ling, L. H. & Tajik, A. J. Diagnostic value of mitral annular velocity for constrictive pericarditis in the absence of respiratory variation in mitral inflow velocity. J. Am. Soc. Echocardiogr. 15, 1468–1471 (2002).

    PubMed  Google Scholar 

  80. Garcia, M. J. et al. Differentiation of constrictive pericarditis from restrictive cardiomyopathy: assessment of left ventricular diastolic velocities in longitudinal axis by Doppler tissue imaging. J. Am. Coll. Cardiol. 27, 108–114 (1996).

    CAS  PubMed  Google Scholar 

  81. Rajagopalan, N. et al. Comparison of new Doppler echocardiographic methods to differentiate constrictive pericardial heart disease and restrictive cardiomyopathy. Am. J. Cardiol. 87, 86–94 (2001).

    CAS  PubMed  Google Scholar 

  82. Ommen, S. R. et al. Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: A comparative simultaneous Doppler-catheterization study. Circulation 102, 1788–1794 (2000).

    CAS  PubMed  Google Scholar 

  83. Sekino, E. et al. Left ventricular function studies in constrictive pericarditis. Jpn J. Surg. 8, 186–191 (1978).

    CAS  PubMed  Google Scholar 

  84. Vogel, J. H., Horgan, J. A. & Strahl, C. L. Left ventricular dysfunction in chronic constrictive pericarditis. Chest 59, 484–492 (1971).

    CAS  PubMed  Google Scholar 

  85. Jiamsripong, P. et al. Impact of pericardial adhesions on diastolic function as assessed by vortex formation time, a parameter of transmitral flow efficiency. Cardiovasc. Ultrasound 8, 42 (2010).

    PubMed  PubMed Central  Google Scholar 

  86. Veress, G. et al. Mitral and tricuspid annular velocities before and after pericardiectomy in patients with constrictive pericarditis. Circ. Cardiovasc. Imaging 4, 399–407 (2011).

    PubMed  Google Scholar 

  87. Sengupta, P. P. et al. Disparate patterns of left ventricular mechanics differentiate constrictive pericarditis from restrictive cardiomyopathy. JACC Cardiovasc. Imaging 1, 29–38 (2008).

    PubMed  Google Scholar 

  88. Kusunose, K. et al. Biventricular mechanics in constrictive pericarditis comparison with restrictive cardiomyopathy and impact of pericardiectomy. Circ. Cardiovasc. Imaging 6, 399–406 (2013).

    PubMed  Google Scholar 

  89. Arnold, M. F. et al. Does atrioventricular ring motion always distinguish constriction from restriction? A Doppler myocardial imaging study. J. Am. Soc. Echocardiogr. 14, 391–395 (2001).

    CAS  PubMed  Google Scholar 

  90. Motoki, H. et al. Changes in left atrial mechanics following pericardiectomy for pericardial constriction. J. Am. Soc. Echocardiogr. 26, 640–648 (2013).

    Google Scholar 

  91. Svanegaard, J., Thayssen, P. & Arendrup, H. K. Atrial natriuretic peptide and hemodynamic response to pericardiectomy for chronic constrictive pericarditis. Am. J. Cardiol. 66, 117–120 (1990).

    CAS  PubMed  Google Scholar 

  92. Wolozin, M. W., Ortola, F. V., Spodick, D. H. & Seifter, J. L. Release of atrial natriuretic factor after pericardiectomy for chronic constrictive pericarditis. Am. J. Cardiol. 62, 1323–1325 (1988).

    CAS  PubMed  Google Scholar 

  93. Roberts, J. T. & Beck, C. S. The effect of chronic cardiac compression on the size of heart muscle fibres. Am. Heart J. 22, 314–320 (1941).

    Google Scholar 

  94. Gregory, M. A., Whitton, I. D. & Cameron, E. W. Myocardial ischaemia in constrictive pericarditis—a morphometric and electron microscopical study. Br. J. Exp. Pathol. 65, 365–376 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Chello, M., Mastroroberto, P., Romano, R., Perticone, F. & Marchese, A. R. Collagen network remodelling and left ventricular function in constrictive pericarditis. Heart 75, 184–189 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Levine, H. D. Myocardial fibrosis in constrictive pericarditis. Electrocardiographic and pathologic observations. Circulation 48, 1268–1281 (1973).

    CAS  PubMed  Google Scholar 

  97. Yamada, H. et al. Clinical features of mixed physiology of constriction and restriction: echocardiographic characteristics and clinical outcome. Eur. J. Echocardiogr. 8, 185–194 (2007).

    PubMed  Google Scholar 

  98. Redfield, M. M. et al. Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: a randomized clinical trial. JAMA 309, 1268–1277 (2013).

    CAS  PubMed  Google Scholar 

  99. Mahé, I., Braunberger, E. & Bergmann, J. F. Angina caused by calcific constrictive pericarditis. Ann. Intern. Med. 137, 1012–1013 (2002).

    PubMed  Google Scholar 

  100. Mukhopadhyay, S., Yusuf, J., Girish, M. P., Gupta, M. D. & Trehan, V. Coronary constriction in constrictive pericarditis. Int. J. Cardiol. 106, 135–136 (2006).

    PubMed  Google Scholar 

  101. Bhatia, M. L. & Tewari, H. L. Hepatic pulsations in constrictive pericarditis. A clinical, hepatographic and haemo-dynamic study. Indian Heart J. 26 (Suppl.), 165–170 (1974).

    Google Scholar 

  102. Manga, P., Vythilingum, S. & Mitha, A. S. Pulsatile hepatomegaly in constrictive pericarditis. Br. Heart J. 52, 465–467 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Beck, W., Schrire, V. & Vogelpoel, L. Splitting of the second heart sound in constrictive pericarditis, with observations on the mechanism of pulsus paradoxus. Am. Heart J. 64, 765–778 (1962).

    CAS  PubMed  Google Scholar 

  104. Strang, J. I. Tuberculous pericarditis in Transkei. Clin. Cardiol. 7, 667–670 (1984).

    CAS  PubMed  Google Scholar 

  105. Boicourt, O. W., Nagle, R. E. & Mounsey, J. P. The clinical significance of systolic retraction of the apical impulse. Br. Heart J. 27, 379–391 (1965).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Seifert, F. C. et al. Surgical treatment of constrictive pericarditis: analysis of outcome and diagnostic error. Circulation 72, II264–II273 (1985).

    CAS  PubMed  Google Scholar 

  107. Nishimura, R. A. & Carabello, B. A. Hemodynamics in the cardiac catheterization laboratory of the 21st century. Circulation 125, 2138–2150 (2012).

    PubMed  Google Scholar 

  108. Walsh, R. A., O'Rourke, A. R. & Shaver, J. A. in Hurst's The Heart 13th edn Vol. 1 Ch. 14 (eds Fuster, V., Walsh, R. A. & Harrington, R. A.) (McGraw-Hill, 2011).

    Google Scholar 

  109. Jaber, W. A., Sorajja, P., Borlaug, B. A. & Nishimura, R. A. Differentiation of tricuspid regurgitation from constrictive pericarditis: novel criteria for diagnosis in the cardiac catheterisation laboratory. Heart 95, 1449–1454 (2009).

    CAS  PubMed  Google Scholar 

  110. Góngora, E. et al. Tricuspid regurgitation in patients undergoing pericardiectomy for constrictive pericarditis. Ann. Thorac. Surg. 85, 163–170 (2008).

    PubMed  Google Scholar 

  111. Lee, K. J. et al. Hepatic venous Doppler flow evaluation for detecting constriction in the presence of severe tricuspid regurgitation [abstract]. J. Am. Coll. Cardiol. 63 (Suppl. 1), A1102 (2014).

    Google Scholar 

  112. Avgoustakis, D., Lazarides, D., Athanasiades, D. & Michaelides, G. The electrocardiogram in constrictive pericarditis before and after radical pericardectomy. Chest 57, 460–467 (1970).

    CAS  PubMed  Google Scholar 

  113. Leya, F. S. et al. The efficacy of brain natriuretic peptide levels in differentiating constrictive pericarditis from restrictive cardiomyopathy. J. Am. Coll. Cardiol. 45, 1900–1902 (2005).

    CAS  PubMed  Google Scholar 

  114. Babuin, L., Alegria, J. R., Oh, J. K., Nishimura, R. A. & Jaffe, A. S. Brain natriuretic peptide levels in constrictive pericarditis and restrictive cardiomyopathy. J. Am. Coll. Cardiol. 47, 1489–1491 (2006).

    CAS  PubMed  Google Scholar 

  115. Sengupta, P. P. et al. Comparison of usefulness of tissue Doppler imaging versus brain natriuretic peptide for differentiation of constrictive pericardial disease from restrictive cardiomyopathy. Am. J. Cardiol. 102, 357–362 (2008).

    CAS  PubMed  Google Scholar 

  116. Hatle, L. K., Appleton, C. P. & Popp, R. L. Differentiation of constrictive pericarditis and restrictive cardiomyopathy by Doppler echocardiography. Circulation 79, 357–370 (1989).

    CAS  PubMed  Google Scholar 

  117. Klein, A. L. et al. Differentiation of constrictive pericarditis from restrictive cardiomyopathy by Doppler transesophageal echocardiographic measurements of respiratory variations in pulmonary venous flow. J. Am. Coll. Cardiol. 22, 1935–1943 (1993).

    CAS  PubMed  Google Scholar 

  118. Tabata, T. et al. Difference in the respiratory variation between pulmonary venous and mitral inflow Doppler velocities in patients with constrictive pericarditis with and without atrial fibrillation. J. Am. Coll. Cardiol. 37, 1936–1942 (2001).

    CAS  PubMed  Google Scholar 

  119. Boonyaratavej, S., Oh, J. K., Tajik, A. J., Appleton, C. P. & Seward, J. B. Comparison of mitral inflow and superior vena cava Doppler velocities in chronic obstructive pulmonary disease and constrictive pericarditis. J. Am. Coll. Cardiol. 32, 2043–2048 (1998).

    CAS  PubMed  Google Scholar 

  120. Sengupta, P. P. et al. Doppler tissue imaging improves assessment of abnormal interventricular septal and posterior wall motion in constrictive pericarditis. J. Am. Soc. Echocardiogr. 18, 226–230 (2005).

    PubMed  Google Scholar 

  121. Engel, P. J. et al. M-mode echocardiography in constrictive pericarditis. J. Am. Coll. Cardiol. 6, 471–474 (1985).

    CAS  PubMed  Google Scholar 

  122. Coylewright, M., Welch, T. D. & Nishimura, R. A. Mechanism of septal bounce in constrictive pericarditis: a simultaneous cardiac catheterisation and echocardiographic study. Heart 99, 1376 (2013).

    PubMed  Google Scholar 

  123. Welch, T. D. et al. Echocardiographic diagnosis of constrictive pericarditis: Mayo Clinic Criteria. Circ. Cardiovasc. Imaging 7, 526–534 (2014).

    PubMed  Google Scholar 

  124. Oh, J. K. et al. Preload reduction to unmask the characteristic Doppler features of constrictive pericarditis. A new observation. Circulation 95, 796–799 (1997).

    CAS  PubMed  Google Scholar 

  125. Alraies, M. C. et al. Relation between echocardiographically estimated and invasively measured filling pressures in constrictive pericarditis. Am. J. Cardiol. 113, 1911–1916 (2014).

    PubMed  Google Scholar 

  126. Choi, E. Y. et al. Incremental value of combining systolic mitral annular velocity and time difference between mitral inflow and diastolic mitral annular velocity to early diastolic annular velocity for differentiating constrictive pericarditis from restrictive cardiomyopathy. J. Am. Soc. Echocardiogr. 20, 738–743 (2007).

    PubMed  Google Scholar 

  127. Sengupta, P. P. et al. Accuracy and pitfalls of early diastolic motion of the mitral annulus for diagnosing constrictive pericarditis by tissue Doppler imaging. Am. J. Cardiol. 93, 886–890 (2004).

    PubMed  Google Scholar 

  128. Butz, T. et al. Severe calcification of the lateral mitral annulus in constrictive pericarditis: a potential pitfall for the use of echocardiographic tissue Doppler imaging. Eur. J. Echocardiogr. 9, 403–405 (2008).

    PubMed  Google Scholar 

  129. Feng, D. et al. Cardiac magnetic resonance imaging pericardial late gadolinium enhancement and elevated inflammatory markers can predict the reversibility of constrictive pericarditis after antiinflammatory medical therapy: a pilot study. Circulation 124, 1830–1837 (2011).

    CAS  PubMed  Google Scholar 

  130. Zurick, A. O. et al. Pericardial delayed hyperenhancement with CMR imaging in patients with constrictive pericarditis undergoing surgical pericardiectomy: a case series with histopathological correlation. JACC Cardiovasc. Imaging 4, 1180–1191 (2011).

    PubMed  Google Scholar 

  131. Francone, M., Dymarkowski, S., Kalantzi, M., Rademakers, F. E. & Bogaert, J. Assessment of ventricular coupling with real-time cine MRI and its value to differentiate constrictive pericarditis from restrictive cardiomyopathy. Eur. Radiol. 16, 944–951 (2006).

    PubMed  Google Scholar 

  132. Anavekar, N. S. et al. Index of biventricular interdependence calculated using cardiac MRI: a proof of concept study in patients with and without constrictive pericarditis. Int. J. Cardiovasc. Imaging 29, 363–369 (2013).

    PubMed  Google Scholar 

  133. Johnson, K. T., Julsrud, P. R. & Johnson, C. D. Constrictive pericarditis at abdominal CT: a commonly overlooked diagnosis. Abdom. Imaging 33, 349–352 (2008).

    PubMed  Google Scholar 

  134. Ha, J. W. et al. Images in cardiovascular medicine. Assessment of pericardial inflammation in a patient with tuberculous effusive constrictive pericarditis with 18F-2-deoxyglucose positron emission tomography. Circulation 113, e4–e5 (2006).

    PubMed  Google Scholar 

  135. Testempassi, E. et al. Constrictive tuberculous pericarditis diagnosed using 18F-fluorodeoxyglucose positron emission tomography: a report of two cases. Ann. Nucl. Med. 24, 421–425 (2010).

    PubMed  Google Scholar 

  136. Bush, C. A., Stang, J. M., Wooley, C. F. & Kilman, J. W. Occult constrictive pericardial disease. Diagnosis by rapid volume expansion and correction by pericardiectomy. Circulation 56, 924–930 (1977).

    CAS  PubMed  Google Scholar 

  137. Hurrell, D. G. et al. Value of dynamic respiratory changes in left and right ventricular pressures for the diagnosis of constrictive pericarditis. Circulation 93, 2007–2013 (1996).

    CAS  PubMed  Google Scholar 

  138. Schoenfeld, M. H., Supple, E. W., Dec, G. W. Jr, Fallon, J. T. & Palacios, I. F. Restrictive cardiomyopathy versus constrictive pericarditis: role of endomyocardial biopsy in avoiding unnecessary thoracotomy. Circulation 75, 1012–1017 (1987).

    CAS  PubMed  Google Scholar 

  139. Sagristà-Sauleda, J., Permanyer-Miralda, G., Candell-Riera, J., Angel, J. & Soler-Soler, J. Transient cardiac constriction: an unrecognized pattern of evolution in effusive acute idiopathic pericarditis. Am. J. Cardiol. 59, 961–966 (1987).

    PubMed  Google Scholar 

  140. Haley, J. H. et al. Transient constrictive pericarditis: causes and natural history. J. Am. Coll. Cardiol. 43, 271–275 (2004).

    PubMed  Google Scholar 

  141. Hancock, E. W. A clearer view of effusive-constrictive pericarditis. N. Engl. J. Med. 350, 435–437 (2004).

    CAS  PubMed  Google Scholar 

  142. Syed, F. F., Ntsekhe, M., Mayosi, B. M. & Oh, J. K. Effusive-constrictive pericarditis. Heart Fail. Rev. 18, 277–287 (2013).

    PubMed  Google Scholar 

  143. Sagristà-Sauleda, J., Angel, J., Sánchez, A., Permanyer-Miralda, G. & Soler-Soler, J. Effusive-constrictive pericarditis. N. Engl. J. Med. 350, 469–475 (2004).

    PubMed  Google Scholar 

  144. Walsh, T. J., Baughman, K. L., Gardner, T. J. & Bulkley, B. H. Constrictive epicarditis as a cause of delayed or absent response to pericardiectomy: a clinicopathological study. J. Thorac. Cardiovasc. Surg. 83, 126–132 (1982).

    CAS  PubMed  Google Scholar 

  145. Bozbuga, N. et al. Pericardiectomy for chronic constrictive tuberculous pericarditis: risks and predictors of survival. Tex. Heart Inst. J. 30, 180–185 (2003).

    PubMed  PubMed Central  Google Scholar 

  146. Cho, Y. H. & Schaff, H. V. Surgery for pericardial disease. Heart Fail. Rev. 18, 375–387 (2013).

    PubMed  Google Scholar 

  147. Strang, J. I. et al. Controlled trial of prednisolone as adjuvant in treatment of tuberculous constrictive pericarditis in Transkei. Lancet 2, 1418–1422 (1987).

    CAS  PubMed  Google Scholar 

  148. Mayosi, B. M., Burgess, L. J. & Doubell, A. F. Tuberculous pericarditis. Circulation 112, 3608–3616 (2005).

    PubMed  Google Scholar 

  149. Kuroda, H. et al. Intraoperative monitoring of pressure-volume loops of the left ventricle in pericardectomy for constrictive pericarditis. J. Thorac. Cardiovasc. Surg. 112, 198–199 (1996).

    CAS  PubMed  Google Scholar 

  150. Imagawa, H. & Ishikawa, K. Images in cardiovascular medicine. Fading out dip-and-plateau pattern of right ventricular pressure in constrictive pericarditis. Circulation 122, 404–405 (2010).

    PubMed  Google Scholar 

  151. Cho, Y. H. et al. Completion pericardiectomy for recurrent constrictive pericarditis: importance of timing of recurrence on late clinical outcome of operation. Ann. Thorac. Surg. 93, 1236–1240 (2012).

    PubMed  Google Scholar 

  152. Harrison, E. C., Crawford, D. W. & Lau, F. Y. Sequential left ventricular function studies before and after pericardiectomy for constrictive pericarditis. Delayed resolution of residual restriction. Am. J. Cardiol. 26, 319–323 (1970).

    CAS  PubMed  Google Scholar 

  153. Senni, M. et al. Left ventricular systolic and diastolic function after pericardiectomy in patients with constrictive pericarditis: Doppler echocardiographic findings and correlation with clinical status. J. Am. Coll. Cardiol. 33, 1182–1188 (1999).

    CAS  PubMed  Google Scholar 

  154. Dines, D. E., Edwards, J. E. & Burchell, H. B. Myocardial atrophy in constructive pericarditis. Proc. Staff Meet. Mayo Clin. 33, 93–99 (1958).

    CAS  PubMed  Google Scholar 

  155. Gopaldas, R. R., Dao, T. K., Caron, N. R. & Markley, J. G. Predictors of in-hospital complications after pericardiectomy: a nationwide outcomes study. J. Thorac. Cardiovasc. Surg. 145, 1227–1233 (2013).

    PubMed  Google Scholar 

  156. Rezaian, G. R. et al. Atrial fibrillation in patients with constrictive pericarditis: the significance of pericardial calcification. Ann. Noninvasive Electrocardiol. 14, 258–261 (2009).

    PubMed  Google Scholar 

  157. Ha, J. W. et al. Impact of left ventricular function on immediate and long-term outcomes after pericardiectomy in constrictive pericarditis. J. Thorac. Cardiovasc. Surg. 136, 1136–1141 (2008).

    PubMed  Google Scholar 

  158. Tokuda, Y. et al. Outcome of pericardiectomy for constrictive pericarditis in Japan: a nationwide outcome study. Ann. Thorac. Surg. 96, 571–576 (2013).

    PubMed  Google Scholar 

  159. Oh, J. K., Seward, J. B. & Tajik, A. J. in The Echo Manual 3rd edn 289–309 (Lippincott Williams & Wilkins, 2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

F.F.S. and J.K.O. researched data for the article. All the authors contributed substantially to discussion of its content, writing, reviewing, and editing the manuscript before submission.

Corresponding author

Correspondence to Jae K. Oh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Aetiology of constrictive pericarditis in contemporary pericardiectomy series (published 1999–present) (DOCX 26 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Syed, F., Schaff, H. & Oh, J. Constrictive pericarditis—a curable diastolic heart failure. Nat Rev Cardiol 11, 530–544 (2014). https://doi.org/10.1038/nrcardio.2014.100

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2014.100

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing