Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Myeloma

Genetic aberrations and survival in plasma cell leukemia

Abstract

Plasma cell leukemia (PCL) is an aggressive and rare hematological malignancy that originates either as primary disease (pPCL) or as a secondary leukemic transformation (sPCL) of multiple myeloma (MM). We report here the genetic aberrations and survival of 80 patients with pPCL or sPCL and make comparisons with 439 cases of MM. pPCL presents a decade earlier than sPCL (54.7 vs 65.3 years) and is associated with longer median overall survival (11.1 vs 1.3 months; P<0.001). 14q32 (IgH) translocations are highly prevalent in both sPCL and pPCL (82–87%); in pPCL IgH translocations almost exclusively involve 11q13 (CCND1), supporting a central etiological role, while in sPCL multiple partner oncogenes are involved, including 11q13, 4p16 (FGFR3/MMSET) and 16q23 (MAF), recapitulating MM. Both show ubiquitous inactivation of TP53 (pPCL 56%; sPCL 83%) by coding mutation or 17p13 deletion; complemented by p14ARF epigenetic silencing in sPCL (29%). Both show frequent N-RAS or K-RAS mutation. Poor survival in pPCL was predicted by MYC translocation (P=0.006). Survival in sPCL was consistently short. Overall pPCL and sPCL are different disorders with distinct natural histories, genetics and survival.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Kyle RA, Maldonado JE, Bayrd ED . Plasma cell leukemia. Report on 17 cases. Arch Intern Med 1974; 133: 813–818.

    Article  CAS  Google Scholar 

  2. Noel P, Kyle RA . Plasma cell leukemia: an evaluation of response to therapy. Am J Med 1987; 83: 1062–1068.

    Article  CAS  Google Scholar 

  3. Dimopoulos MA, Palumbo A, Delasalle KB, Alexanian R . Primary plasma cell leukaemia. Br J Haematol 1994; 88: 754–759.

    Article  CAS  Google Scholar 

  4. Jaffe ES, Harris NL, Stein H, Vardiman JW . World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. IARC Press: Lyon, 2001.

    Google Scholar 

  5. Avet-Loiseau H, Daviet A, Brigaudeau C, Callet-Bauchu E, Terre C, Lafage-Pochitaloff M et al. Cytogenetic, interphase, and multicolor fluorescence in situ hybridization analyses in primary plasma cell leukemia. Blood 2001; 97: 822–825.

    Article  CAS  Google Scholar 

  6. Cai ZJ . Primary plasma cell leukemia—a comprehensive analysis of 44 cases. Zhonghua Zhong Liu Za Zhi 1990; 12: 314–317.

    CAS  PubMed  Google Scholar 

  7. Garcia-Sanz R, Orfao A, Gonzalez M, Tabernero MD, Blade J, Moro MJ et al. Primary plasma cell leukemia: clinical, immunophenotypic, DNA ploidy, and cytogenetic characteristics. Blood 1999; 93: 1032–1037.

    CAS  PubMed  Google Scholar 

  8. Costello R, Sainty D, Bouabdallah R, Fermand JP, Delmer A, Divine M et al. Primary plasma cell leukaemia: a report of 18 cases. Leuk Res 2001; 25: 103–107.

    Article  CAS  Google Scholar 

  9. Christou L, Hatzimichael E, Chaidos A, Tsiara S, Bourantas KL . Treatment of plasma cell leukemia with vincristine, liposomal doxorubicin and dexamethasone. Eur J Haematol 2001; 67: 51–53.

    Article  CAS  Google Scholar 

  10. Oken MM, Leong T, Lenhard Jr RE, Greipp PR, Kay NE, Van Ness B et al. The addition of interferon or high dose cyclophosphamide to standard chemotherapy in the treatment of patients with multiple myeloma: phase III eastern cooperative oncology group clinical trial EST 9486. Cancer 1999; 86: 957–968.

    Article  CAS  Google Scholar 

  11. Fonseca R, Harrington D, Oken MM, Dewald GW, Bailey RJ, Van Wier SA et al. Biological and prognostic significance of interphase fluorescence in situ hybridization detection of chromosome 13 abnormalities (delta13) in multiple myeloma: an eastern cooperative oncology group study. Cancer Res 2002; 62: 715–720.

    CAS  PubMed  Google Scholar 

  12. Fonseca R, Blood E, Rue M, Harrington D, Oken MM, Kyle RA et al. Clinical and biologic implications of recurrent genomic aberrations in myeloma. Blood 2003; 101: 4569–4575.

    Article  CAS  Google Scholar 

  13. Drewinko B, Alexanian R, Boyer H, Barlogie B, Rubinow SI . The growth fraction of human myeloma cells. Blood 1981; 57: 333–338.

    CAS  PubMed  Google Scholar 

  14. Drewinko B, Alexanian R . Growth kinetics of plasma cell myeloma. J Natl Cancer Inst 1977; 58: 1247–1253.

    Article  CAS  Google Scholar 

  15. Kyle RA . Multiple myeloma. An update on diagnosis and management. Acta Oncol 1990; 29: 1–8.

    Article  CAS  Google Scholar 

  16. Fonseca R, Bailey RJ, Ahmann GJ, Rajkumar SV, Hoyer JD, Lust JA et al. Genomic abnormalities in monoclonal gammopathy of undetermined significance. Blood 2002; 100: 1417–1424.

    CAS  PubMed  Google Scholar 

  17. Fonseca R, Oken MM, Greipp PR . The t(4;14)(p16.3;q32) is strongly associated with chromosome 13 abnormalities in both multiple myeloma and monoclonal gammopathy of undetermined significance. Blood 2001; 98: 1271–1272.

    Article  CAS  Google Scholar 

  18. Hayman SR, Bailey RJ, Jalal SM, Ahmann GJ, Dispenzieri A, Gertz MA et al. Translocations involving the immunoglobulin heavy-chain locus are possible early genetic events in patients with primary systemic amyloidosis. Blood 2001; 98: 2266–2268.

    Article  CAS  Google Scholar 

  19. Fonseca R, Hoyer JD, Aguayo P, Jalal SM, Ahmann GJ, Rajkumar SV et al. Clinical significance of the translocation (11;14)(q13;q32) in multiple myeloma. Leuk Lymphoma 1999; 35: 599–605.

    Article  CAS  Google Scholar 

  20. Fonseca R, Debes-Marun CS, Picken EB, Dewald GW, Bryant SC, Winkler JM et al. The recurrent IgH translocations are highly associated with nonhyperdiploid variant multiple myeloma. Blood 2003; 102: 2562–2567.

    Article  CAS  Google Scholar 

  21. Chesi M, Bergsagel PL, Shonukan OO, Martelli ML, Brents LA, Chen T et al. Frequent dysregulation of the c-maf proto-oncogene at 16q23 by translocation to an Ig locus in multiple myeloma. Blood 1998; 91: 4457–4463.

    CAS  PubMed  Google Scholar 

  22. Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB . Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 1996; 93: 9821–9826.

    Article  CAS  Google Scholar 

  23. Seidl S, Ackermann J, Kaufmann H, Keck A, Nosslinger T, Zielinski CC et al. DNA-methylation analysis identifies the E-cadherin gene as a potential marker of disease progression in patients with monoclonal gammopathies. Cancer 2004; 100: 2598–2606.

    Article  CAS  Google Scholar 

  24. Ganguly A . An update on conformation sensitive gel electrophoresis. Hum Mutat 2002; 19: 334–342.

    Article  CAS  Google Scholar 

  25. Ganguly A, Rock MJ, Prockop DJ . Conformation-sensitive gel electrophoresis for rapid detection of single-base differences in double-stranded PCR products and DNA fragments: evidence for solvent-induced bends in DNA heteroduplexes. Proc Natl Acad Sci USA 1993; 90: 10325–10329.

    Article  CAS  Google Scholar 

  26. Ahuja HG, Foti A, Bar-Eli M, Cline MJ . The pattern of mutational involvement of RAS genes in human hematologic malignancies determined by DNA amplification and direct sequencing. Blood 1990; 75: 1684–1690.

    CAS  PubMed  Google Scholar 

  27. Bezieau S, Devilder MC, Avet-Loiseau H, Mellerin MP, Puthier D, Pennarun E et al. High incidence of N and K-Ras activating mutations in multiple myeloma and primary plasma cell leukemia at diagnosis. Hum Mutat 2001; 18: 212–224.

    Article  CAS  Google Scholar 

  28. Ortega MM, Faria RM, Shitara ES, Assis AM, Albuquerque DM, Oliveira JS et al. N-RAS and K-RAS gene mutations in Brazilian patients with multiple myeloma. Leuk Lymphoma 2006; 47: 285–289.

    Article  CAS  Google Scholar 

  29. Liang DC, Shih LY, Fu JF, Li HY, Wang HI, Hung IJ et al. K-Ras mutations and N-Ras mutations in childhood acute leukemias with or without mixed-lineage leukemia gene rearrangements. Cancer 2006; 106: 950–956.

    Article  CAS  Google Scholar 

  30. Smadja NV, Leroux D, Soulier J, Dumont S, Arnould C, Taviaux S et al. Further cytogenetic characterization of multiple myeloma confirms that 14q32 translocations are a very rare event in hyperdiploid cases. Genes Chromosomes Cancer 2003; 38: 234–239.

    Article  Google Scholar 

  31. Saez B, Martin-Subero JI, Guillen-Grima F, Odero MD, Prosper F, Cigudosa JC et al. Chromosomal abnormalities clustering in multiple myeloma reveals cytogenetic subgroups with nonrandom acquisition of chromosomal changes. Leukemia 2004; 18: 654–657.

    Article  CAS  Google Scholar 

  32. Cho Y, Gorina S, Jeffrey P, Pavletich N . Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 1994; 265: 346–355.

    Article  CAS  Google Scholar 

  33. May P, May E . Twenty years of p53 research: structural and functional aspects of the p53 protein. Oncogene 1999; 18: 7621–7636.

    Article  CAS  Google Scholar 

  34. Kato S, Han S-Y, Liu W, Otsuka K, Shibata H, Kanamaru R et al. Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. PNAS 2003; 100: 8424–8429.

    Article  CAS  Google Scholar 

  35. Schultheis B, Kramer A, Willer A, Hegenbart U, Goldschmidt H, Hehlmann R . Analysis of p73 and p53 gene deletions in multiple myeloma. Leukemia 1999; 13: 2099–2103.

    Article  CAS  Google Scholar 

  36. Gertz MA, Lacy MQ, Dispenzieri A, Greipp PR, Litzow MR, Henderson KJ et al. Clinical implications of t(11;14)(q13;q32), t(4;14)(p16.3;q32), and -17p13 in myeloma patients treated with high-dose therapy. Blood 2005; 106: 2837–2840.

    Article  CAS  Google Scholar 

  37. Chng WJ, Price-Troska T, Gonzalez-Paz N, Van Wier S, Jacobus S, Blood E et al. Clinical significance of TP53 mutation in myeloma. Leukemia 2007; 21: 582–584.

    Article  CAS  Google Scholar 

  38. Stott FJ, Bates S, James MC, McConnell BB, Starborg M, Brookes S et al. The alternative product from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2. EMBO J 1998; 17: 5001–5014.

    Article  CAS  Google Scholar 

  39. Eymin B, Gazzeri S, Brambilla C, Brambilla E . Mdm2 overexpression and p14(ARF) inactivation are two mutually exclusive events in primary human lung tumors. Oncogene 2002; 21: 2750–2761.

    Article  CAS  Google Scholar 

  40. Esteller M, Cordon-Cardo C, Corn PG, Meltzer SJ, Pohar KS, Watkins DN et al. p14ARF silencing by promoter hypermethylation mediates abnormal intracellular localization of MDM2. Cancer Res 2001; 61: 2816–2821.

    CAS  PubMed  Google Scholar 

  41. Magdinier F, Wolffe AP . Selective association of the methyl-CpG binding protein MBD2 with the silent p14/p16 locus in human neoplasia. Proc Natl Acad Sci USA 2001; 98: 4990–4995.

    Article  CAS  Google Scholar 

  42. Dahia PL, Aguiar RC, Alberta J, Kum JB, Caron S, Sill H et al. PTEN is inversely correlated with the cell survival factor Akt/PKB and is inactivated via multiple mechanismsin haematological malignancies. Hum Mol Genet 1999; 8: 185–193.

    Article  CAS  Google Scholar 

  43. Hyun T, Yam A, Pece S, Xie X, Zhang J, Miki T et al. Loss of PTEN expression leading to high Akt activation in human multiple myelomas. Blood 2000; 96: 3560–3568.

    CAS  PubMed  Google Scholar 

  44. Leslie NR, Bennett D, Gray A, Pass I, Hoang-Xuan K, Downes CP . Targeting mutants of PTEN reveal distinct subsets of tumour suppressor functions. Biochem J 2001; 357: 427–435.

    Article  CAS  Google Scholar 

  45. Stiles B, Gilman V, Khanzenzon N, Lesche R, Li A, Qiao R et al. Essential role of AKT-1/protein kinase B alpha in PTEN-controlled tumorigenesis. Mol Cell Biol 2002; 22: 3842–3851.

    Article  CAS  Google Scholar 

  46. Chang H, Qi XY, Claudio J, Zhuang L, Patterson B, Stewart AK . Analysis of PTEN deletions and mutations in multiple myeloma. Leuk Res 2006; 30: 262–265.

    Article  CAS  Google Scholar 

  47. Chang H, Sloan S, Li D, Patterson B . Genomic aberrations in plasma cell leukemia shown by interphase fluorescence in situ hybridization. Cancer Genet Cytogenet 2005; 156: 150–153.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Donaldson Charitable fund Trust, Public Health Service grant no. R01 CA83724-01 (RF) and P01 CA62242 (RF, AD, RAK, PRG) from the National Cancer Institute. RF and PRG are supported by the CI-5 Cancer Research Fund-Lilly Clinical Investigator Award of the Damon Runyon Cancer Research Fund. PRG and RF are also supported by the ECOG Grant CA21115-25C from the National Cancer Institute. RET is supported by a fellowship from AMGEN and the Haematology Society of Australia and New Zealand (HSANZ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Fonseca.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiedemann, R., Gonzalez-Paz, N., Kyle, R. et al. Genetic aberrations and survival in plasma cell leukemia. Leukemia 22, 1044–1052 (2008). https://doi.org/10.1038/leu.2008.4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2008.4

Keywords

This article is cited by

Search

Quick links