Skip to main content
Log in

The p53 protein family and radiation sensitivity: Yes or no?

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The p53 tumor suppressor protein is a key mediator of an ATM-dependent DNA damage response cascade following cellular exposure to ionizing radiation. The p53-family members, p63 and p73, are highly similar to p53, yet are differentially activated by IR, UV and cis-platinum via ATM and c-abl/ATR signaling pathways. Loss of function of p53 can occur by mutation or degradation; giving rise to alterations in G1 and G2 cell cycle checkpoint control, cell death, DNA repair and genetic stability. The end result of these alterations can be the generation of radioresistant mutant tumor cells. Indeed, in isogenic systems, loss of p53 or p73 function has been associated with decreased chemosensitivity and radiosensitivity, in vitro. However, clinical data supporting a role for p53 genotype as an independent predictive factor for radiotherapy outcome continues to be controversial due to variable endpoints in clinical trial design and in methodology in detecting p53 function. Nonetheless, in carefully controlled radiotherapy studies where mutations in p53 have been detected using DNA sequencing or functional assays, the presence of mutant p53 can be associated with decreased local control following radiotherapy. This suggests that novel molecular treatment strategies specifically designed to re-institute normal p53 function within resistant tumors can be used as combined modality protocols to improve local control and maintain a therapeutic ratio. A future challenge lies in the pre-therapy determination of a ‘molecular therapeutic ratio’ for individual patients which could allow for specific prognostication based on p53 functional status and subsequent individualized therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Eliyahu D, Raz A, Gruss P, Givol D, Oren M: Participation of p53 cellular tumor antigen in transformation of normal embryonic cells. Nature 312: 646–649, 1984

    PubMed  Google Scholar 

  2. Eliyahu D, Michalovitz D, Eliyahu S, Pinhasi-Kimhi O, Oren M: Wild-type p53 can inhibit oncogene-mediated focus formation. Proc Natl Acad Sci USA 86: 8763–8767, 1989

    PubMed  Google Scholar 

  3. Finlay CA, Hinds PW, Levine AJ: The p53 protooncogene can act as a suppressor of transformation. Cell 57: 1083–1093, 1989

    PubMed  Google Scholar 

  4. Hainaut P, Hernandez T, Robinson A, Rodriguez-Tome P, Flores T, Hollstein M, Harris CC, Montesano R: IARC database of p53 gene mutations in human tumors and cell lines: Updated compilation, revised formats and new visualisation tools. Nucleic Acids Res 26: 205–213, 1998

    PubMed  Google Scholar 

  5. Sherr CJ: Tumor surveillance via the ARF-p53 pathway. Genes Dev 12: 2984–2991, 1998

    PubMed  Google Scholar 

  6. Sherr CJ, Weber JD: The ARF/p53 pathway. Curr Opin Genet Dev 10: 94–99, 2000

    PubMed  Google Scholar 

  7. Ko LJ, Prives C: p53: Puzzle and paradigm. Genes Dev 10: 1054–1072, 1996

    PubMed  Google Scholar 

  8. Giaccia AJ, Kastan MB: The complexity of p53 modulation: Emerging patterns from divergent signals. Genes Dev 12: 2973–2983, 1998

    PubMed  Google Scholar 

  9. Gottlieb TM, Oren M: p53 in growth control and neoplasia. Biochim Biophys Acta 1287: 77–102, 1996

    PubMed  Google Scholar 

  10. Levine AJ: p53, the cellular gatekeeper for growth and division. Cell 88: 323–331, 1997

    PubMed  Google Scholar 

  11. Benchimol S: p53-dependent pathways of apoptosis. Cell Death Differ 8: 1049–1051, 2001

    PubMed  Google Scholar 

  12. May P, May E: Twenty years of p53 research: Structural and functional aspects of the p53 protein. Oncogene 18: 7621–7636, 1999

    PubMed  Google Scholar 

  13. Brown JM, Wouters BG: Apoptosis, p53, and tumor cell sensitivity to anticancer agents. Cancer Res 59: 1391–1399, 1999

    PubMed  Google Scholar 

  14. Greenblatt MS, Grollman AP, Harris CC: Deletions and insertions in the p53 tumor suppressor gene in human cancers: Confirmation of the DNA polymerase slippage/misalignment model. Cancer Res 56: 2130–2136, 1996

    PubMed  Google Scholar 

  15. Greenblatt MS, Bennett WP, Hollstein M, Harris CC: Mutations in the p53 tumor suppressor gene: Clues to cancer etiology and molecular pathogenesis. Cancer Res 54: 4855–4878, 1994

    PubMed  Google Scholar 

  16. Morris SM: A role for p53 in the frequency and mechanism of mutation. Mutat Res 511: 45–62, 2002

    PubMed  Google Scholar 

  17. Fei P, Bernhard EJ, El-Deiry WS: Tissue-specific induction of p53 targets in vivo. Cancer Res 62: 7316–7327, 2002

    PubMed  Google Scholar 

  18. Lin Y, Brown L, Hedley DW, Barber DL, Benchimol S: The death-promoting activity of p53 can be inhibited by distinct signaling pathways. Blood 100: 3990–4000, 2002

    PubMed  Google Scholar 

  19. Bristow RG, Benchimol S, Hill RP: The p53 gene as a modifier of intrinsic radiosensitivity: Implications for radiotherapy. Radiother Oncol 40: 197–223, 1996

    PubMed  Google Scholar 

  20. Asschert JG, Vellenga E, De Jong S, de Vries EG: Mutual interactions between p53 and growth factors in cancer. Anticancer Res 18: 1713–1725, 1998

    PubMed  Google Scholar 

  21. Fei P, El-Deiry WS: P53 and radiation responses. Oncogene 22: 5774–5783, 2003

    PubMed  Google Scholar 

  22. Seto E, Usheva A, Zambetti GP, Momand J, Horikoshi N, Weinmann R, Levine AJ, Shenk T: Wild-type p53 binds to the TATA-binding protein and represses transcription. Proc Natl Acad Sci USA 89: 12028–12032, 1992

    PubMed  Google Scholar 

  23. Xiao H, Pearson A, Coulombe B, Truant R, Zhang S, Regier JL, Triezenberg SJ, Reinberg D, Flores O, Ingles CJ: Binding of basal transcription factor TFIIH to the acidic activation domains of VP16 and p53. Mol Cell Biol 14: 7013–7024, 1994

    PubMed  Google Scholar 

  24. Chao C, Saito S, Kang J, Anderson CW, Appella E, Xu Y: p53 transcriptional activity is essential for p53-dependent apoptosis following DNA damage. Embo J 19: 4967–4975, 2000

    PubMed  Google Scholar 

  25. Lu H, Levine AJ: Human TAFII31 protein is a transcriptional coactivator of the p53 protein. Proc Natl Acad Sci USA 92: 5154–5158, 1995

    PubMed  Google Scholar 

  26. Thut CJ, Chen JL, Klemm R, Tjian R: p53 transcriptional activation mediated by coactivators TAFII40 and TAFII60. Science 267: 100–104, 1995

    PubMed  Google Scholar 

  27. Oliner JD, Pietenpol JA, Thiagalingam S, Gyuris J, Kinzler KW, Vogelstein B: Oncoprotein MDM2 conceals the activation domain of tumor suppressor p53. Nature 362: 857–860, 1993

    PubMed  Google Scholar 

  28. Momand J, Wu HH, Dasgupta G: MDM2-Master regulator of the p53 tumor suppressor protein. Gene 242: 15–29, 2000

    PubMed  Google Scholar 

  29. Yew PR, Liu X, Berk AJ: Adenovirus E1B oncoprotein tethers a transcriptional repression domain to p53. Genes Dev 8: 190–202, 1994

    PubMed  Google Scholar 

  30. Walker KK, Levine AJ: Identification of a novel p53 functional domain that is necessary for efficient growth suppression. Proc Natl Acad Sci USA 93: 15335–15340, 1996

    PubMed  Google Scholar 

  31. Venot C, Maratrat M, Dureuil C, Conseiller E, Bracco L, Debussche L: The requirement for the p53 proline-rich functional domain for mediation of apoptosis is correlated with specific PIG3 gene transactivation and with transcriptional repression. Embo J 17: 4668–4679, 1998

    PubMed  Google Scholar 

  32. Sakamuro D, Sabbatini P, White E, Prendergast GC: The polyproline region of p53 is required to activate apoptosis but not growth arrest. Oncogene 15: 887–898, 1997

    PubMed  Google Scholar 

  33. Zhang Y, Xiong Y: A p53 amino-terminal nuclear export signal inhibited by DNA damage-induced phosphorylation. Science 292: 1910–1915, 2001

    PubMed  Google Scholar 

  34. Cho Y, Gorina S, Jeffrey PD, Pavletich NP: Crystal structure of a p53 tumor suppressor-DNA complex: Understanding tumorigenic mutations. Science 265: 346–355, 1994

    PubMed  Google Scholar 

  35. Pipas JM, Levine AJ: Role of T antigen interactions with p53 in tumorigenesis. Semin Cancer Biol 11: 23–30, 2001

    PubMed  Google Scholar 

  36. Iwabuchi K, Bartel PL, Bin L, Marraccino R, Fields S: Two cellular proteins that bind to wild-type but not mutant p53. Proc Natl Acad Sci USA 91: 6098–6102, 1994

    PubMed  Google Scholar 

  37. Iwabuchi K, Li B, Massa HF, Trask BJ, Date T, Fields S: Stimulation of p53-mediated transcriptional activation by the p53-binding proteins, 53BP1 and 53BP2. J Biol Chem 273: 26061–26068, 1998

    PubMed  Google Scholar 

  38. Chai YL, Cui J, Shao N, Shyam E, Reddy P, Rao VN: The second BRCT domain of BRCA1 proteins interacts with p53 and stimulates transcription from the p21WAF1/CIP1 promoter. Oncogene 18: 263–268, 1999

    PubMed  Google Scholar 

  39. Ward IM, Minn K, Jorda KG, Chen J: Accumulation of checkpoint protein 53BP1 at DNA breaks involves its binding to phosphorylated histone H2AX. J Biol Chem 278: 19579–19582, 2003

    PubMed  Google Scholar 

  40. Linke SP, Sengupta S, Khabie N, Jeffries BA, Buchhop S, Miska S, Henning W, Pedeux R, Wang XW, Hofseth LJ, Yang Q, Garfield SH, Sturzbecher HW, Harris CC: p53 interacts with hRAD51 and hRAD54, and directly modulates homologous recombination. Cancer Res 63: 2596–2605, 2003

    PubMed  Google Scholar 

  41. Sengupta S, Linke SP, Pedeux R, Yang Q, Farnsworth J, Garfield SH, Valerie K, Shay JW, Ellis NA, Wasylyk B, Harris CC: BLM helicase-dependent transport of p53 to sites of stalled DNA replication forks modulates homologous recombination. Embo J 22: 1210–1222, 2003

    PubMed  Google Scholar 

  42. Dong Y, Hakimi MA, Chen X, Kumaraswamy E, Cooch NS, Godwin AK, Shiekhattar R: Regulation of BRCC, a holoenzyme complex containing BRCA1 and BRCA2, by a signalosome-like subunit and its role in DNA repair. Mol Cell 12: 1087–1099, 2003

    PubMed  Google Scholar 

  43. Wu K, Jiang SW, Couch FJ: p53 mediates repression of the BRCA2 promoter and down-regulation of BRCA2 mRNA and protein levels in response to DNA damage. J Biol Chem 278: 15652–15660, 2003

    Google Scholar 

  44. Pietenpol JA, Tokino T, Thiagalingam S, el-Deiry WS, Kinzler KW, Vogelstein B: Sequence-specific transcriptional activation is essential for growth suppression by p53. Proc Natl Acad Sci USA 91: 1998–2002, 1994

    PubMed  Google Scholar 

  45. Jeffrey PD, Gorina S, Pavletich NP: Crystal structure of the tetramerization domain of the p53 tumor suppressor at 1.7 angstroms. Science 267: 1498–1502, 1995

    PubMed  Google Scholar 

  46. Kraiss S, Quaiser A, Oren M, Montenarh M: Oligomerization of oncoprotein p53. J Virol 62: 4737–4744, 1988

    PubMed  Google Scholar 

  47. Chene P: The role of tetramerization in p53 function. Oncogene 20: 2611–2617, 2001

    PubMed  Google Scholar 

  48. Bakalkin G, Selivanova G, Yakovleva T, Kiseleva E, Kashuba E, Magnusson KP, Szekely L, Klein G, Terenius L, Wiman KG: p53 binds single-stranded DNA ends through the C-terminal domain and internal DNA segments via the middle domain. Nucleic Acids Res 23: 362–369, 1995

    PubMed  Google Scholar 

  49. Bakalkin G, Yakovleva T, Selivanova G, Magnusson KP, Szekely L, Kiseleva E, Klein G, Terenius L, Wiman KG: p53 binds single-stranded DNA ends and catalyzes DNA renaturation and strand transfer. Proc Natl Acad Sci USA 91: 413–417, 1994

    PubMed  Google Scholar 

  50. Jayaraman L, Prives C: Activation of p53 sequence-spindle DNA binding by short single strands of DNA required the p53 c-terminus. Cell 81: 1021–1029, 1995

    PubMed  Google Scholar 

  51. Bill CA, Yu Y, Miselis NR, Little JB, Nickoloff JA: A role for p53 in DNA end rejoining by human cell extracts. Mutat Res 385: 21–29, 1997

    PubMed  Google Scholar 

  52. Liu Y, Kulesz-Martin M: p53 protein at the hub of cellular DNA damage response pathways through sequence-specific and non-sequence-specific DNA binding. Carcinogenesis 22: 851–860, 2001

    PubMed  Google Scholar 

  53. Reed M, Woelker B, Wang P, Wang Y, Anderson ME, Tegtmeyer P: The C-terminal domain of p53 recognizes DNA damaged by ionizing radiation. Proc Natl Acad Sci USA 92: 9455–9459, 1995

    PubMed  Google Scholar 

  54. Zotchev SB, Protopopova M, Selivanova G: p53 C-terminal interaction with DNA ends and gaps has opposing effect on specific DNA binding by the core. Nucleic Acids Res 28: 4005–4012, 2000

    PubMed  Google Scholar 

  55. Tang W, Willers H, Powell SN: p53 directly enhances rejoining of DNA double-strand breaks with cohesive ends in gamma-irradiated mouse fibroblasts. Cancer Res 59: 2562–2565, 1999

    PubMed  Google Scholar 

  56. Hupp TR, Lane DP: Allosteric activation of latent p53 tetramers. Curr Biol 4: 865–875, 1994

    PubMed  Google Scholar 

  57. Hupp TR, Meek DW, Midgley CA, Lane DP: Regulation of the specific DNA binding function of p53. Cell 71: 875–886, 1992

    PubMed  Google Scholar 

  58. Ayed A, Mulder FA, Yi GS, Lu Y, Kay LE, Arrowsmith CH: Latent and active p53 are identical in conformation. Nat Struct Biol 8: 756–760, 2001

    PubMed  Google Scholar 

  59. Ashcroft M, Vousden KH: Regulation of p53 stability. Oncogene 18: 7637–7643, 1999

    PubMed  Google Scholar 

  60. Maki CG, Howley PM: Ubiquitination of p53 and p21 is differentially affected by ionizing and UV radiation. Mol Cell Biol 17: 355–363, 1997

    PubMed  Google Scholar 

  61. Maltzman W, Czyzyk L: UV irradiation stimulates levels of p53 cellular tumor antigen in nontransformed mouse cells. Mol Cell Biol 4: 1689–1694, 1984

    PubMed  Google Scholar 

  62. Price BD, Calderwood SK: Increased sequence-specific p53-DNA binding activity after DNA damage is attenuated by phorbol esters. Oncogene 8: 3055–3062, 1993

    PubMed  Google Scholar 

  63. Kubbutat MH, Jones SN, Vousden KH: Regulation of p53 stability by Mdm2. Nature 387: 299–303, 1997

    PubMed  Google Scholar 

  64. Kubbutat MH, Ludwig RL, Ashcroft M, Vousden KH: Regulation of Mdm2-directed degradation by the C terminus of p53. Mol Cell Biol 18: 5690–5698, 1998

    PubMed  Google Scholar 

  65. Haupt Y, Maya R, Kazaz A, Oren M: Mdm2 promotes the rapid degradation of p53. Nature 387: 296–299, 1997

    PubMed  Google Scholar 

  66. Li M, Brooks CL, Wu-Baer F, Chen D, Baer R, Gu W: Mono-versus polyubiquitination: Differential control of p53 fate by Mdm2. Science 302: 1972–1975, 2003

    PubMed  Google Scholar 

  67. Bakkenist CJ, Kastan MB: DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421: 499–506, 2003

    PubMed  Google Scholar 

  68. Canman CE, Lim DS, Cimprich KA, Taya Y, Tamai K, Sakaguchi K, Appella E, Kastan MB, Siliciano JD: Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281: 1677–1679, 1998

    PubMed  Google Scholar 

  69. Ahn JY, Schwarz JK, Piwnica-Worms H, Canman CE: Threonine 68 phosphorylation by ataxia telangiectasia mutated is required for efficient activation of Chk2 in response to ionizing radiation. Cancer Res 60: 5934–5936, 2000

    PubMed  Google Scholar 

  70. Melchionna R, Chen XB, Blasina A, McGowan CH: Threonine 68 is required for radiation-induced phosphorylation and activation of Cds1. Nat Cell Biol 2: 762–765, 2000

    PubMed  Google Scholar 

  71. Chehab NH, Malikzay A, Appel M, Halazonetis TD: Chk2/hCds1 functions as a DNA damage checkpoint in G(1) by stabilizing p53. Genes Dev 14: 278–288, 2000

    PubMed  Google Scholar 

  72. Shieh SY, Ahn J, Tamai K, Taya Y, Prives C: The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev 14: 289–300, 2000

    PubMed  Google Scholar 

  73. Hirao A, Kong YY, Matsuoka S, Wakeham A, Ruland J, Yoshida H, Liu D, Elledge SJ, Mak TW: DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287: 1824–1827, 2000

    PubMed  Google Scholar 

  74. Ahn J, Urist M, Prives C: Questioning the role of checkpoint kinase 2 in the p53 DNA damage response. J Biol Chem 278: 20480–20489, 2003

    PubMed  Google Scholar 

  75. Jallepalli PV, Lengauer C, Vogelstein B, Bunz F: The Chk2 tumor suppressor is not required for p53 responses in human cancer cells. J Biol Chem 278: 20475–20479, 2003

    PubMed  Google Scholar 

  76. Siliciano JD, Canman CE, Taya Y, Sakaguchi K, Appella E, Kastan MB: DNA damage induces phosphorylation of the amino terminus of p53. Genes Dev 11: 3471–3481, 1997

    PubMed  Google Scholar 

  77. Shieh SY, Ikeda M, Taya Y, Prives C: DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91: 325–334, 1997

    PubMed  Google Scholar 

  78. Lakin ND, Jackson SP: Regulation of p53 in response to DNA damage. Oncogene 18: 7644–7655, 1999

    PubMed  Google Scholar 

  79. Jimenez GS, Khan SH, Stommel JM, Wahl GM: p53 regulation by post-translational modification and nuclear retention in response to diverse stresses. Oncogene 18: 7656–7665, 1999

    PubMed  Google Scholar 

  80. Lohrum MA, Vousden KH: Regulation and activation of p53 and its family members. Cell Death Differ 6: 1162–1168, 1999

    PubMed  Google Scholar 

  81. Rubbi CP, Milner J: Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses. Embo J 22: 6068–6077, 2003

    PubMed  Google Scholar 

  82. Rubbi CP, Milner J: p53 is a chromatin accessibility factor for nucleotide excision repair of DNA damage. Embo J 22: 975–986, 2003

    PubMed  Google Scholar 

  83. Caelles C, Helmberg A, Karin M: p53-dependent apoptosis in the absence of transcriptional activation of p53-target genes. Nature 370: 220–223, 1994

    PubMed  Google Scholar 

  84. Wagner AJ, Kokontis JM, Hay N: Myc-mediated apoptosis requires wild-type p53 in a manner independent of cell cycle arrest and the ability of p53 to induce p21waf1/cip1. Genes Dev 8: 2817–2830, 1994

    PubMed  Google Scholar 

  85. Kokontis JM, Wagner AJ, O'Leary M, Liao S, Hay N: A transcriptional activation function of p53 is dispensable for and inhibitory of its apoptotic function. Oncogene 20: 659–668, 2001

    PubMed  Google Scholar 

  86. Wang XW, Vermeulen W, Coursen JD, Gibson M, Lupold SE, Forrester K, Xu G, Elmore L, Yeh H, Hoeijmakers JH, Harris CC: The XPB and XPD DNA helicases are components of the p53-mediated apoptosis pathway. Genes Dev 10: 1219–1232, 1996

    PubMed  Google Scholar 

  87. Gottlieb E, Oren M: p53 facilitates pRb cleavage in IL-3-deprived cells: Novel pro-apoptotic activity of p53. Embo J 17: 3587–3596, 1998

    PubMed  Google Scholar 

  88. Gottlieb E, Haffner R, von Ruden T, Wagner EF, Oren M: Down-regulation of wild-type p53 activity interferes with apoptosis of IL-3-dependent hematopoietic cells following IL-3 withdrawal. Embo J 13: 1368–1374, 1994

    PubMed  Google Scholar 

  89. Perkins EJ, Nair A, Cowley DO, Van Dyke T, Chang Y, Ramsden DA: Sensing of intermediates in V(D)J recombination by ATM. Genes Dev 16: 159–164, 2002

    PubMed  Google Scholar 

  90. Liang SH, Clarke MF: Regulation of p53 localization. Eur J Biochem 268: 2779–2783, 2001

    PubMed  Google Scholar 

  91. Woo RA, Jack MT, Xu Y, Burma S, Chen DJ, Lee PW: DNA damage-induced apoptosis requires the DNA-dependent protein kinase, and is mediated by the latent population of p53. Embo J 21: 3000–3008, 2002

    PubMed  Google Scholar 

  92. Hamer G, Roepers-Gajadien HL, van Duyn-Goedhart A, Gademan IS, Kal HB, van Buul PP, de Rooij DG: DNA double-strand breaks and gamma-H2AX signaling in the testis. Biol Reprod 68: 628–634, 2003

    PubMed  Google Scholar 

  93. Mummenbrauer T, Muller B, Wiesmuller L, Deppert W, Grosse F: p53 protein exibits 3?-to-5?exonuclease activity. Cell 85: 1089–1099, 1996

    PubMed  Google Scholar 

  94. Skalski V, Lin ZY, Choi BY, Brown KR: Substrate specificity of the p53-associated 3?-5? exonuclease. Oncogene 19(29): 3321–3329, 2000

    PubMed  Google Scholar 

  95. Akyuz N, Boehden GS, Susse S, Rimek A, Preuss U, Scheidtmann KH, Wiesmuller L: DNA substrate dependence of p53-mediated regulation of double-strand break repair. Mol Cell Biol 22: 6306–6317, 2002

    PubMed  Google Scholar 

  96. Zink D, Mayr C, Janz C, Wiesmuller L: Association of p53 and MSH2 with recombinative repair complexes during S phase. Oncogene 21: 4788–4800, 2002

    PubMed  Google Scholar 

  97. Okorokov AL, Warnock L, Milner J: Effect of wild-type, S15D and R175H p53 proteins on DNA end joining in vitro: Potential mechanism of DNA double-strand break repair modulation. Carcinogenesis 23: 549–557, 2002

    PubMed  Google Scholar 

  98. Smith ML, Seo YR: p53 regulation of DNA excision repair pathways. Mutagenesis 17: 149–156, 2002

    PubMed  Google Scholar 

  99. Seo YR, Fishel ML, Amundson S, Kelley MR, Smith ML: Implication of p53 in base excision DNA repair: in vivo evidence. Oncogene 21: 731–737, 2002

    PubMed  Google Scholar 

  100. Cadwell C, Zambetti GP: The effects of wild-type p53 tumor suppressor activity and mutant p53 gain-of-function on cell growth. Gene 277: 15–30, 2001

    PubMed  Google Scholar 

  101. Sigal A, Rotter V: Oncogenic mutations of the p53 tumor suppressor: The demons of the guardian of the genome. Cancer Res 60: 6788–6793, 2000

    PubMed  Google Scholar 

  102. Deppert W, Gohler T, Koga H, Kim E: Mutant p53: ''gain of function'' through perturbation of nuclear structure and function? J Cell Biochem Suppl (Suppl 35): 115–122, 2000

    Google Scholar 

  103. Bristow RG, Peacock J, Jang A, Kim J, Hill RP, Benchimol S: Resistance to DNA-damaging agents is discordant from experimental metastatic capacity in MEF ras-transformants-expressing gain of function MTp53. Oncogene 22: 2960–2966, 2003

    PubMed  Google Scholar 

  104. Benard J, Douc-Rasy S, Ahomadegbe JC: TP53 family members and human cancers. Hum Mutat 21: 182–191, 2003

    PubMed  Google Scholar 

  105. Ikawa S, Nakagawara A, Ikawa Y: p53 family genes: Structural comparison, expression and mutation. Cell Death Differ 6: 1154–1161, 1999

    PubMed  Google Scholar 

  106. Kaelin WG, Jr: The p53 gene family. Oncogene 18: 7701–7705, 1999

    PubMed  Google Scholar 

  107. Levrero M, De Laurenzi V, Costanzo A, Gong J, Melino G, Wang JY: Structure, function and regulation of p63 and p73. Cell Death Differ 6: 1146–1153, 1999

    PubMed  Google Scholar 

  108. Yang A, Kaghad M, Caput D, McKeon F: On the shoulders of giants: p63, p73 and the rise of p53. Trends Genet 18: 90–95, 2002

    PubMed  Google Scholar 

  109. Irwin M, Marin MC, Phillips AC, Seelan RS, Smith DI, Liu W, Flores ER, Tsai KY, Jacks T, Vousden KH, Kaelin WG, Jr: Role for the p53 homologue p73 in E2F-1-induced apoptosis. Nature 407: 645–648, 2000

    PubMed  Google Scholar 

  110. Flores ER, Tsai KY, Crowley D, Sengupta S, Yang A, McKeon F, Jacks T: p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature 416: 560–564, 2002

    PubMed  Google Scholar 

  111. Irwin MS, Kondo K, Marin MC, Cheng LS, Hahn WC, Kaelin WG, Jr: Chemosensitivity linked to p73 function. Cancer Cell 3: 403–410, 2003

    PubMed  Google Scholar 

  112. Bergamaschi D, Gasco M, Hiller L, Sullivan A, Syed N, Trigiante G, Yulug I, Merlano M, Numico G, Comino A, Attard M, Reelfs O, Gusterson B, Bell AK, Heath V, Tavassoli M, Farrell PJ, Smith P, Lu X, Crook T: p53 polymorphism influences response in cancer chemotherapy via modulation of p73-dependent apoptosis. Cancer Cell 3: 387–402, 2003

    PubMed  Google Scholar 

  113. Ma BB, Bristow RG, Kim J, Siu LL: Combined-modality treatment of solid tumors using radiotherapy and molecular targeted agents. J Clin Oncol 21: 2760–2776, 2003

    PubMed  Google Scholar 

  114. Fridman JS, Lowe SW: Control of apoptosis by p53. Oncogene 22: 9030–9040, 2003

    PubMed  Google Scholar 

  115. Roninson IB: Tumor cell senescence in cancer treatment. Cancer Res 63: 2705–2715, 2003

    PubMed  Google Scholar 

  116. Coates PJ, Lorimore SA, Lindsay KJ, Wright EG: Tissue-specific p53 responses to ionizing radiation and their genetic modification: The key to tissue-specific tumor susceptibility? J Pathol 201: 377–388, 2003

    PubMed  Google Scholar 

  117. Hendry JH, Cai WB, Roberts SA, Potten CS: p53 deficiency sensitizes clonogenic cells to irradiation in the large but not the small intestine. Radiat Res 148: 254–259, 1997

    PubMed  Google Scholar 

  118. Hendry JH: Genomic instability: Potential contributions to tumor and normal tissue response, and second tumors, after radiotherapy. Radiother Oncol 59: 117–126, 2001

    PubMed  Google Scholar 

  119. Schmitt CA, Fridman JS, Yang M, Baranov E, Hoffman RM, Lowe SW: Dissecting p53 tumor suppressor functions in vivo. Cancer Cell 1: 289–298, 2002

    PubMed  Google Scholar 

  120. Bristow RG, Hill R: Molecular and Cellular Basis of Radiotherapy. In: Tannock, Hill (eds) The Basic Science of Oncology. Vol. Third Edition, McGraw-Hill, pp. 295–321, 1998

  121. Brown JM, Wouters BG: Apoptosis: Mediator or mode of cell killing by anticancer agents? Drug Resist Updat 4: 135–136, 2001

    PubMed  Google Scholar 

  122. Boyle JM, Spreadborough AR, Greaves MJ, Birch JM, Varley JM, Scott D: Delayed chromosome changes in gamma-irradiated normal and Li-Fraumeni fibroblasts. Radiat Res 157: 158–165, 2002

    PubMed  Google Scholar 

  123. Williams KJ, Boyle JM, Birch JM, Norton JD, Scott D: Cell cycle arrest defect in Li-Fraumeni Syndrome: A mechanism of cancer predisposition? Oncogene 14: 277–282, 1997

    PubMed  Google Scholar 

  124. Bunz F, Hwang PM, Torrance C, Waldman T, Zhang Y, Dillehay L, Williams J, Lengauer C, Kinzler KW, Vogelstein B: Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J Clin Invest 104: 263–269, 1999

    PubMed  Google Scholar 

  125. El-Deiry WS: The role of p53 in chemosensitivity and radiosensitivity. Oncogene 22: 7486–7495, 2003

    PubMed  Google Scholar 

  126. Dahm-Daphi J: p53: Biology and role for cellular radiosensitivity. Strahlenther Onkol 176: 278–285, 2000

    PubMed  Google Scholar 

  127. Brachman DG, Beckett M, Graves D, Haraf D, Vokes E, Weichselbaum RR: p53 mutation does not correlate with radiosensitivity in 24 head and neck cancer cell lines. Cancer Res 53: 3667–3669, 1993

    PubMed  Google Scholar 

  128. Pai HH, Rochon L, Clark B, Black M, Shenouda G: Overexpression of p53 protein does not predict local-regional control or survival in patients with early-stage squamous cell carcinoma of the glottic larynx treated with radiotherapy. Int J Radiat Oncol Biol Phys 41: 37–42, 1998

    PubMed  Google Scholar 

  129. Koelbl O, Rosenwald A, Haberl M, Muller J, Reuther J, Flentje M: p53 and Ki-67 as predictive markers for radiosensitivity in squamous cell carcinoma of the oral cavity? An immunohistochemical and clinicopathologic study. Int J Radiat Oncol Biol Phys 49: 147–154, 2001

    PubMed  Google Scholar 

  130. Friesland S, Mellin H, Munck-Wikland E, Nilsson A, Lindholm J, Dalianis T, Lewensohn R: Human papilloma virus (HPV) and p53 immunostaining in advanced tonsillar carcinoma-relation to radiotherapy response and survival. Anticancer Res 21: 529–534, 2001

    PubMed  Google Scholar 

  131. Weber KJ, Wenz F: p53, apoptosis and radiosensitivity-experimental and clinical data. Onkologie 25: 136–141, 2002

    PubMed  Google Scholar 

  132. Thames HD, Petersen C, Petersen S, Nieder C, Baumann M: Immunohistochemically detected p53 mutations in epithelial tumors and results of treatment with chemotherapy and radiotherapy. A treatment-specific overview of the clinical data. Strahlenther Onkol 178: 411–421, 2002

    PubMed  Google Scholar 

  133. Kirsch DG, Kastan MB: Tumor-suppressor p53: Implications for tumor development and prognosis. J Clin Oncol 16: 3158–3168, 1998

    PubMed  Google Scholar 

  134. Taylor D, Koch WM, Zahurak M, Shah K, Sidransky D, Westra WH: Immunohistochemical detection of p53 protein accumulation in head and neck cancer: Correlation with p53 gene alterations. Hum Pathol 30: 1221–1225, 1999

    PubMed  Google Scholar 

  135. Gel. C, Righetti SC, Zunino F, Della Torre G, Pierotti MA, Righetti PG: Detection of p53 point mutations by double-gradient, denaturing gradient gel electrophoresis. Electrophoresis 18: 2921–2927, 1997

    PubMed  Google Scholar 

  136. Casey G, Lopez ME, Ramos JC, Plummer SJ, Arboleda MJ, Shaughnessy M, Karlan B, Slamon DJ: DNA sequence analysis of exons 2 through 11 and immunohistochemical staining are required to detect all known p53 alterations in human malignancies. Oncogene 13: 1971–1981, 1996

    PubMed  Google Scholar 

  137. Hartmann A, Blaszyk H, McGovern RM, Schroeder JJ, Cunningham J, De Vries EM, Kovach JS, Sommer SS: p53 gene mutations inside and outside of exons 5-8: The patterns differ in breast and other cancers. Oncogene 10: 681–688, 1995

    PubMed  Google Scholar 

  138. Duddy PM, Hanby AM, Barnes DM, Camplejohn RS: Improving the detection of p53 mutations in breast cancer by use of the FASAY, a functional assay. J Mol Diagn 2: 139–144, 2000

    PubMed  Google Scholar 

  139. Mroz RM, Holownia A, Chyczewska E, Chyczewski L, Braszko JJ: P53 N-terminal Ser-15-P and Ser-20-P levels in squamous cell lung cancer after radio/chemotherapy. Am J Respir Cell Mol Biol, 2003

  140. Rau B, Sturm I, Lage H, Berger S, Schneider U, Hauptmann S, Wust P, Riess H, Schlag PM, Dorken B, Daniel PT: Dynamic expression profile of p21WAF1/CIP1 and Ki-67 predicts survival in rectal carcinoma treated with preoperative radiochemotherapy. J Clin Oncol 21: 3391–3401, 2003

    PubMed  Google Scholar 

  141. Santucci MA, Barbieri E, Frezza G, Perrone A, Iacurti E, Galuppi A, Salvi F, Bunkeila F, Neri S, Putti C, Babini L: Radiation-induced gadd45 expression correlates with clinical response to radiotherapy of cervical carcinoma. Int J Radiat Oncol Biol Phys 46: 411–416, 2000

    PubMed  Google Scholar 

  142. Sogawa N, Takiguchi N, Koda K, Oda K, Satomi D, Kato K, Ishikura H, Miyazaki M: Value of expression of p21WAF1/CIP1 as a prognostic factor in advanced middle and lower rectal cancer patients treated with preoperative radio-chemotherapy. Int J Oncol 21: 787–793, 2002

    PubMed  Google Scholar 

  143. Stift A, Prager G, Selzer E, Widder J, Kandioler D, Friedl J, Teleky B, Herbst F, Wrba F, Bergmann M: The early response of p53-dependent proteins during radiotherapy in human rectal carcinoma and in adjacent normal tissue. Int J Oncol 23: 1269–1275, 2003

    PubMed  Google Scholar 

  144. Scott SL, Earle JD, Gumerlock PH: Functional p53 increases prostate cancer cell survival after exposure to fractionated doses of ionizing radiation. Cancer Res 63: 7190–7196, 2003

    PubMed  Google Scholar 

  145. Kato S, Han SY, Liu W, Otsuka K, Shibata H, Kanamaru R, Ishioka C: Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc Natl Acad Sci USA 100: 8424–8429, 2003

    PubMed  Google Scholar 

  146. Camplejohn RS, Rutherford J: p53 functional assays: Detecting p53 mutations in both the germline and in sporadic tumors. Cell Prolif 34: 1–14, 2001

    PubMed  Google Scholar 

  147. Wang W, El-Deiry WS: Bioluminescent molecular imaging of endogenous and exogenous p53-mediated transcription in vitro and in vivo using an HCT116 human colon carcinoma xenograft model. Cancer Biol Ther 2: 196–202, 2003

    PubMed  Google Scholar 

  148. Doubrovin M, Ponomarev V, Beresten T, Balatoni J, Bornmann W, Finn R, Humm J, Larson S, Sadelain M, Blasberg R, Gelovani TJ: Imaging transcriptional regulation of p53-dependent genes with positron emission tomography in vivo. Proc Natl Acad Sci USA 98: 9300–9305, 2001

    PubMed  Google Scholar 

  149. Luker GD, Sharma V, Pica CM, Prior JL, Li W, Piwnica-Worms D: Molecular imaging of protein-protein interactions: controled expression of p53 and large T-antigen fusion proteins in vivo. Cancer Res 63: 1780–1788, 2003

    PubMed  Google Scholar 

  150. Regele S, Vogl FD, Kohler T, Kreienberg R, Runnebaum IB: p53 autoantibodies can be indicative of the development of breast cancer relapse. Anticancer Res 23: 761–764, 2003

    PubMed  Google Scholar 

  151. Hammond EM, Dorie MJ, Giaccia AJ: ATR/ATM targets are phosphorylated by ATR in response to hypoxia and ATM in response to reoxygenation. J Biol Chem 278: 12207–12213, 2003

    PubMed  Google Scholar 

  152. Subarsky P, Hill RP: The hypoxic tumor microenvironment and metastatic progression. Clin Exp Metastasis 20: 237–250, 2003

    PubMed  Google Scholar 

  153. Graeber TG, Osmanian C, Jacks T, Housman DE, Koch CJ, Lowe SW, Giaccia AJ: Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumors. Nature 379: 88–91, 1996

    PubMed  Google Scholar 

  154. Nordsmark M, Alsner J, Keller J, Nielsen OS, Jensen OM, Horsman MR, Overgaard J: Hypoxia in human soft tissue sarcomas: Adverse impact on survival and no association with p53 mutations. Br J Cancer 84: 1070–1075, 2001

    PubMed  Google Scholar 

  155. Achison M, Hupp TR: Hypoxia attenuates the p53 response to cellular damage. Oncogene 22: 3431–3440, 2003

    PubMed  Google Scholar 

  156. Brown JM: Exploiting tumor hypoxia and overcoming mutant p53 with tirapazamine. Br J Cancer 77 (Suppl 4): 12–14, 1998

    PubMed  Google Scholar 

  157. Turesson I, Bernefors R, Book M, Flogegard M, Hermansson I, Johansson KA, Lindh A, Sigurdardottir S, Thunberg U, Nyman J: Normal tissue response to low doses of radiotherapy assessed by molecular markers-a study of skin in patients treated for prostate cancer. Acta Oncol 40: 941–951, 2001

    PubMed  Google Scholar 

  158. Marijnen CA, Glimelius B: The role of radiotherapy in rectal cancer. Eur J Cancer 38: 943–952, 2002

    PubMed  Google Scholar 

  159. Couture C, Raybaud-Diogene H, Tetu B, Bairati I, Murry D, Allard J, Fortin A: p53 and Ki-67 as markers of radioresistance in head and neck carcinoma. Cancer 94: 713–722, 2002

    PubMed  Google Scholar 

  160. Moonen L, Ong F, Gallee M, Verheij M, Horenblas S, Hart AA, Bartelink H: Apoptosis, proliferation and p53, cyclin D1, and retinoblastoma gene expression in relation to radiation response in transitional cell carcinoma of the bladder. Int J Radiat Oncol Biol Phys 49: 1305–1310, 2001

    PubMed  Google Scholar 

  161. Cheng L, Sebo TJ, Cheville JC, Pisansky TM, Slezak J, Bergstralh EJ, Pacelli A, Neumann RM, Zincke H, Bostwick DG: p53 protein overexpression is associated with increased cell proliferation in patients with locally recurrent prostate carcinoma after radiation therapy. Cancer 85: 1293–1299, 1999

    PubMed  Google Scholar 

  162. Kropveld A, Slootweg PJ, Blankenstein MA, Terhaard CH, Hordijk GJ: Ki-67 and p53 in T2 laryngeal cancer. Laryngoscope 108: 1548–1552, 1998

    PubMed  Google Scholar 

  163. Grossfeld GD, Olumi AF, Connolly JA, Chew K, Gibney J, Bhargava V, Waldman FM, Carroll PR: Locally recurrent prostate tumors following either radiation therapy or radical prostatectomy have changes in Ki-67 labeling index, p53 and bcl-2 immunoreactivity. J Urol 159: 1437–1443, 1998

    PubMed  Google Scholar 

  164. Edstrom S, Cvetkovska E, Westin T, Young C: Overexpression of p53-related proteins predicts rapid growth rate of head and neck cancer. Laryngoscope 111: 124–130, 2001

    PubMed  Google Scholar 

  165. Alsner J, Hoyer M, Sorensen SB, Overgaard J: Interaction between potential doubling time and TP53 mutation: Predicting radiotherapy outcome in squamous cell carcinoma of the head and neck. Int J Radiat Oncol Biol Phys 49: 519–525, 2001

    PubMed  Google Scholar 

  166. Bjork-Eriksson T, West CM, Cvetskovska E, Svensson M, Karlsson E, Magnusson B, Slevin NJ, Edstrom S, Mercke C: The lack of correlation between proliferation (Ki-67, PCNA, LI, Tpot), p53 expression and radiosensitivity for head and neck cancers. Br J Cancer 80: 1400–1404, 1999

    PubMed  Google Scholar 

  167. Bentzen SM: Repopulation in radiation oncology: Perspectives of clinical research. Int J Radiat Biol 79: 581–585, 2003

    PubMed  Google Scholar 

  168. Davis AJ, Tannock JF: Repopulation of tumor cells between cycles of chemotherapy: A neglected factor. Lancet Oncol 1: 86–93, 2000

    PubMed  Google Scholar 

  169. Koukourakis MI: Hypofractionated and accelerated radiotherapy with amifostine cytoprotection (HypoARC): A new concept in radiotherapy and encouraging results in breast cancer. Semin Oncol 29: 42–46, 2002

    Google Scholar 

  170. Bristow RG, Hu Q, Jang A, Chung S, Peacock J, Benchimol S, Hill R: Radioresistant MTp53-expressing rat embryo cell transformants exhibit increased DNA-dsb rejoining during exposure to ionizing radiation. Oncogene 16: 1789–1802, 1998

    PubMed  Google Scholar 

  171. Haas-Kogan DA, Kogan SS, Yount G, Hsu J, Haas M, Deen DF, Israel MA: p53 function influences the effect of fractionated radiotherapy on glioblastoma tumors. Int J Radiat Oncol Biol Phys 43: 399–403, 1999

    PubMed  Google Scholar 

  172. Pekkola-Heino K, Servomaa K, Kiuru A, Grenman R: Sublethal damage repair capacity in carcinoma cell lines with p53 mutations. Head Neck 20: 298–303, 1998

    PubMed  Google Scholar 

  173. Schwartz JL, Jordan R, Kaufmann WK, Rasey J, Russell KJ, Weichselbaum RR: Evidence for the expression of radiation-induced potentially lethal damage being a p53-dependent process. Int J Radiat Biol 76: 1037–1043, 2000

    PubMed  Google Scholar 

  174. DiBiase SJ, Guan J, Curran WJ Jr., Iliakis G: Repair of DNA double-strand breaks and radiosensitivity to killing in an isogenic group of p53 mutant cell lines. Int J Radiat Oncol Biol Phys 45: 743–751, 1999

    PubMed  Google Scholar 

  175. Mallya SM, Sikpi MO: Requirement for p53 in ionizing-radiation-inhibition of double-strand-break rejoining by human lymphoblasts. Mutat Res 434: 119–132, 1999

    PubMed  Google Scholar 

  176. Radford IR: p53 status, DNA double-strand break repair proficiency, and radiation response of mouse lymphoid and myeloid cell lines. Int J Radiat Biol 66: 557–560, 1994

    PubMed  Google Scholar 

  177. Szumiel I, Jaworska A, Kapiszewska M, John A, Gradzka I, Sochanowicz B: Differential induction of apoptosis in x-irradiated L5178Y sublines bearing p53 mutation. Radiat Environ Biophys 39: 33–40, 2000

    PubMed  Google Scholar 

  178. Mekeel KL, Tang W, Kachnic LA, Luo CM, DeFrank JS, Powell SN: Inactivation of p53 results in high rates of homologous recombination. Oncogene 14: 1847–1857, 1997

    PubMed  Google Scholar 

  179. Okorokov AL: p53 in a crosstalk between DNA repair and cell cycle checkpoints. Cell Cycle 2: 233–235, 2003

    PubMed  Google Scholar 

  180. Boyle JM, Spreadborough A, Greaves MJ, Birch JM, Varley JM, Scott D: The relationship between radiation-induced G(1)arrest and chromosome aberrations in Li-Fraumeni fibroblasts with or without germline TP53 mutations. Br J Cancer 85: 293–296, 2001

    PubMed  Google Scholar 

  181. Eur J Cancer 39: 1053–1060, 2003

    Google Scholar 

  182. Lane DP, Lain S: Therapeutic exploitation of the p53 pathway. Trends Mol Med 8: S38–42, 2002

    PubMed  Google Scholar 

  183. Bullock AN, Fersht AR: Rescuing the function of mutant p53. Nat Rev Cancer 1: 68–76, 2001

    PubMed  Google Scholar 

  184. Komarov PG, Komarova EA, Kondratov RV, Christov-Tselkov K, Coon JS, Chernov MV, Gudkov AV: A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 285: 1733–1737, 1999

    PubMed  Google Scholar 

  185. Lin Y, Waldman BC, Waldman AS: Suppression of high-fidelity double-strand break repair in mammalian chromosomes by pifithrin-alpha, a chemical inhibitor of p53. DNA Repair (Amst) 2: 1–11, 2003

    Google Scholar 

  186. Komarova EA, Gudkov AV: Suppression of p53: A new approach to overcome side effects of antitumor therapy. Biochemistry (Mosc) 65: 41–48, 2000

    Google Scholar 

  187. Hall EJ, Wuu CS: Radiation-induced second cancers: The impact of 3D-CRT and IMRT. Int J Radiat Oncol Biol Phys 56: 83–88, 2003

    PubMed  Google Scholar 

  188. Foster BA, Coffey HA, Morin MJ, Rastinejad F: Pharmacological rescue of mutant p53 conformation and function. Science 286: 2507–2510, 1999

    PubMed  Google Scholar 

  189. Bykov VJ, Issaeva N, Selivanova G, Wiman KG: Mutant p53-dependent growth suppression distinguishes PRIMA-1 from known anticancer drugs: A statistical analysis of information in the National Cancer Institute database. Carcinogenesis 23: 2011–2018, 2002

    PubMed  Google Scholar 

  190. Friedler A, Hansson LO, Veprintsev DB, Freund SM, Rippin TM, Nikolova PV, Proctor MR, Rudiger S, Fersht AR: A peptide that binds and stabilizes p53 core domain: Chaperone strategy for rescue of oncogenic mutants. Proc Natl Acad Sci USA 99: 937–942, 2002

    PubMed  Google Scholar 

  191. Bohm L, Roos WP, Serafin AM: Inhibition of DNA repair by Pentoxifylline and related methylxanthine derivatives. Toxicology 193: 153–160, 2003

    PubMed  Google Scholar 

  192. Koniaras K, Cuddihy AR, Christopoulos H, Hogg A, O'Connell MJ: Inhibition of Chk1-dependent G2 DNA damage checkpoint radiosensitizes p53 mutant human cells. Oncogene 20: 7453–7463, 2001

    PubMed  Google Scholar 

  193. Xiao HH, Makeyev Y, Butler J, Vikram B, Franklin WA: 7-hydroxystaurosporine (UCN-01) preferentially sensitizes cells with a disrupted TP53 to gamma radiation in lung cancer cell lines. Radiat Res 158: 84–93, 2002

    PubMed  Google Scholar 

  194. Graves PR, Yu L, Schwarz JK, Gales J, Sausville EA, O'Connor PM, Piwnica-Worms H: The Chk1 protein kinase and the Cdc25C regulatory pathways are targets of the anticancer agent UCN-01. J Biol Chem 275: 5600–5605, 2000

    PubMed  Google Scholar 

  195. Curman D, Cinel B, Williams DE, Rundle N, Block WD, Goodarzi AA, Hutchins JR, Clarke PR, Zhou BB, Lees-Miller SP, Andersen RJ, Roberge M: Inhibition of the G2 DNA damage checkpoint and of protein kinases Chk1 and Chk2 by the marine sponge alkaloid debromohymenialdisine. J Biol Chem 276: 17914–17919, 2001

    PubMed  Google Scholar 

  196. Roberge M, Berlinck RG, Xu L, Anderson HJ, Lim LY, Curman D, Stringer CM, Friend SH, Davies P, Vincent I, Haggarty SJ, Kelly MT, Britton R, Piers E, Andersen RJ: High-throughput assay for G2 checkpoint inhibitors and identification of the structurally novel compound isogranulatimide. Cancer Res 58: 5701–5706, 1998

    PubMed  Google Scholar 

  197. Jackson JR, Gilmartin A, Imburgia C, Winkler JD, Marshall LA, Roshak A: An indolocarbazole inhibitor of human checkpoint kinase (Chk1) abrogates cell cycle arrest caused by DNA damage. Cancer Res 60: 566–572, 2000

    PubMed  Google Scholar 

  198. Wang Y, Li J, Booher RN, Kraker A, Lawrence T, Leopold WR, Sun Y: Radiosensitization of p53 mutant cells by PD0166285, a novel G(2) checkpoint abrogator. Cancer Res 61: 8211–8217, 2001

    PubMed  Google Scholar 

  199. Roth JA, Grammer SF, Swisher SG, Komaki R, Nemunaitis J, Merritt J, Meyn RE: p53 gene replacement for cancer-interactions with DNA damaging agents. Acta Oncol 40: 739–744, 2001

    PubMed  Google Scholar 

  200. Swisher SG, Roth JA: Clinical update of Ad-p53 gene therapy for lung cancer. Surg Oncol Clin N Am 11: 521–535, 2002

    PubMed  Google Scholar 

  201. Swisher SG, Roth JA: p53 gene therapy for lung cancer. Curr Oncol Rep 4: 334–340, 2002

    PubMed  Google Scholar 

  202. Xu L, Pirollo KF, Chang EH: Tumor-targeted p53-gene therapy enhances the efficacy of conventional chemo/radiotherapy. J Control Release 74: 115–128, 2001

    PubMed  Google Scholar 

  203. Xu L, Tang WH, Huang CC, Alexander W, Xiang LM, Pirollo KF, Rait A, Chang EH: Systemic p53 gene therapy of cancer with immunolipoplexes targeted by antitransferrin receptor scFv. Mol Med 7: 723–734, 2001

    PubMed  Google Scholar 

  204. Zeimet AG, Marth C: Why did p53 gene therapy fail in ovarian cancer? Lancet Oncol 4: 415–422, 2003

    PubMed  Google Scholar 

  205. Geoerger B, Grill J, Opolon P, Morizet J, Aubert G, Lecluse Y, van Beusechem VW, Gerritsen WR, Kirn DH, Vassal G: Potentiation of radiation therapy by the oncolytic adenovirus dl1520 (ONYX-015) in human malignant glioma xenografts. Br J Cancer 89: 577–584, 2003

    PubMed  Google Scholar 

  206. Sah NK, Munshi A, Nishikawa T, Mukhopadhyay T, Roth JA, Meyn RE: Adenovirus-mediated wild-type p53 radiosensitizes human tumor cells by suppressing DNA repair capacity. Mol Cancer Ther 2: 1223–1231, 2003

    PubMed  Google Scholar 

  207. Wang H, Nan L, Yu D, Agrawal S, Zhang R: Antisense anti-MDM2 oligonucleotides as a novel therapeutic approach to human breast cancer: In vitro and in vivo activities and mechanisms. Clin Cancer Res 7: 3613–3624, 2001

    PubMed  Google Scholar 

  208. Bottger A, Bottger V, Sparks A, Liu WL, Howard SF, Lane DP: Design of a synthetic Mdm2-binding mini protein that activates the p53 response in vivo. Curr Biol 7: 860–869, 1997

    PubMed  Google Scholar 

  209. Hamer G, Gademan IS, Kal HB, de Rooij DG: Role for c-Abl and p73 in the radiation response of male germ cells. Oncogene 20: 4298–4304, 2001

    PubMed  Google Scholar 

  210. Camphausen K, Moses MA, Menard C, Sproull M, Beecken WD, Folkman J, O'Reilly MS: Radiation abscopal antitumor effect is mediated through p53. Cancer Res 63: 1990–1993, 2003

    PubMed  Google Scholar 

  211. Little JB, Azzam EI, de Toledo SM, Nagasawa H: Bystander effects: Intracellular transmission of radiation damage signals. Radiat Prot Dosimetry 99: 150–162, 2002

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert G. Bristow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuddihy, A.R., Bristow, R.G. The p53 protein family and radiation sensitivity: Yes or no?. Cancer Metastasis Rev 23, 237–257 (2004). https://doi.org/10.1023/B:CANC.0000031764.81141.e4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CANC.0000031764.81141.e4

Navigation