Skip to main content

Advertisement

Log in

Diagnosis and Treatment of Chorea Syndromes

  • Movement Disorders (M Okun, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Chorea is a common movement disorder which can be caused by a large variety of diseases including neurodegenerative diseases, metabolic diseases, and autoimmune diseases, or can be secondary to structural changes. The basal ganglia seem to be mainly involved in the pathophysiology indicating the vulnerability of this region. The diagnosis can be challenging, especially if chorea occurs during the treatment of neuropsychiatric conditions, and in these cases, it is difficult to distinguish between medication side effects (i.e., tardive dyskinesia) and the development of a neurodegenerative disease. Most therapeutic approaches are predominantly symptomatic, with a focus on multidisciplinary care for many patients. Nevertheless, some underlying diseases can be successfully treated and must not be missed. In this review, we summarize recent new developments in the differential diagnosis of chorea syndromes and suggest a pathway for a successful diagnosis of chorea in infancy, childhood, and adulthood for daily practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Kirvan CA, Swedo SE, Heuser JS, Cunningham MW. Mimicry and autoantibody-mediated neuronal cell signaling in Sydenham chorea. Nat Med. 2003;9(7):914–20. doi:10.1038/nm892.

    CAS  PubMed  Google Scholar 

  2. Kirvan CA, Cox CJ, Swedo SE, Cunningham MW. Tubulin is a neuronal target of autoantibodies in Sydenham’s chorea. J Immunol. 2007;178(11):7412–21.

    CAS  PubMed  Google Scholar 

  3. Gras D, Jonard L, Roze E, Chantot-Bastaraud S, Koht J, Motte J, et al. Benign hereditary chorea: phenotype, prognosis, therapeutic outcome and long term follow-up in a large series with new mutations in the TITF1/NKX2-1 gene. J Neurol Neurosurg Psychiatry. 2012;83(10):956–62. doi:10.1136/jnnp-2012-302505.

    PubMed  Google Scholar 

  4. Mahajnah M, Inbar D, Steinmetz A, Heutink P, Breedveld GJ, Straussberg R. Benign hereditary chorea: clinical, neuroimaging, and genetic findings. J Child Neurol. 2007;22(10):1231–4. doi:10.1177/0883073807306261.

    PubMed  Google Scholar 

  5. Bauer P, Kreuz FR, Burk K, Saft C, Andrich J, Heilemann H, et al. Mutations in TITF1 are not relevant to sporadic and familial chorea of unknown cause. Mov Disord. 2006;21(10):1734–7. doi:10.1002/mds.21031.

    PubMed  Google Scholar 

  6. Asmus F, Horber V, Pohlenz J, Schwabe D, Zimprich A, Munz M, et al. A novel TITF-1 mutation causes benign hereditary chorea with response to levodopa. Neurology. 2005;64(11):1952–4. doi:10.1212/01.WNL.0000164000.75046.CC.

    CAS  PubMed  Google Scholar 

  7. Krude H, Schutz B, Biebermann H, von Moers A, Schnabel D, Neitzel H, et al. Choreoathetosis, hypothyroidism, and pulmonary alterations due to human NKX2-1 haploinsufficiency. J Clin Invest. 2002;109(4):475–80. doi:10.1172/JCI14341.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Weber YG, Storch A, Wuttke TV, Brockmann K, Kempfle J, Maljevic S, et al. GLUT1 mutations are a cause of paroxysmal exertion-induced dyskinesias and induce hemolytic anemia by a cation leak. J Clin Invest. 2008;118(6):2157–68. doi:10.1172/JCI34438.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Suls A, Dedeken P, Goffin K, Van Esch H, Dupont P, Cassiman D, et al. Paroxysmal exercise-induced dyskinesia and epilepsy is due to mutations in SLC2A1, encoding the glucose transporter GLUT1. Brain. 2008;131(Pt 7):1831–44. doi:10.1093/brain/awn113.

    PubMed Central  PubMed  Google Scholar 

  10. Leen WG, de Wit CJ, Wevers RA, van Engelen BG, Kamsteeg EJ, Klepper J, et al. Child neurology: differential diagnosis of a low CSF glucose in children and young adults. Neurology. 2013;81(24):e178–81. doi:10.1212/01.wnl.0000437294.20817.99.

    PubMed  Google Scholar 

  11. Leen WG, Klepper J, Verbeek MM, Leferink M, Hofste T, van Engelen BG, et al. Glucose transporter-1 deficiency syndrome: the expanding clinical and genetic spectrum of a treatable disorder. Brain. 2010;133(Pt 3):655–70. doi:10.1093/brain/awp336.

    PubMed  Google Scholar 

  12. Friedman JR, Thiele EA, Wang D, Levine KB, Cloherty EK, Pfeifer HH, et al. Atypical GLUT1 deficiency with prominent movement disorder responsive to ketogenic diet. Mov Disord. 2006;21(2):241–5. doi:10.1002/mds.20660.

    PubMed  Google Scholar 

  13. Meneret A, Gaudebout C, Riant F, Vidailhet M, Depienne C, Roze E. PRRT2 mutations and paroxysmal disorders. Eur J Neurol. 2013;20(6):872–8. doi:10.1111/ene.12104. This is a useful review article summarizing recent findings related to this mutation.

    CAS  PubMed  Google Scholar 

  14. Meneret A, Grabli D, Depienne C, Gaudebout C, Picard F, Durr A, et al. PRRT2 mutations: a major cause of paroxysmal kinesigenic dyskinesia in the European population. Neurology. 2012;79(2):170–4. doi:10.1212/WNL.0b013e31825f06c3.

    CAS  PubMed  Google Scholar 

  15. Li HF, Chen WJ, Ni W, Wang KY, Liu GL, Wang N, et al. PRRT2 mutation correlated with phenotype of paroxysmal kinesigenic dyskinesia and drug response. Neurology. 2013;80(16):1534–5. doi:10.1212/WNL.0b013e31828cf7e1.

    PubMed  Google Scholar 

  16. Chen WJ, Lin Y, Xiong ZQ, Wei W, Ni W, Tan GH, et al. Exome sequencing identifies truncating mutations in PRRT2 that cause paroxysmal kinesigenic dyskinesia. Nat Genet. 2011;43(12):1252–5. doi:10.1038/ng.1008.

    CAS  PubMed  Google Scholar 

  17. Cloarec R, Bruneau N, Rudolf G, Massacrier A, Salmi M, Bataillard M, et al. PRRT2 links infantile convulsions and paroxysmal dyskinesia with migraine. Neurology. 2012;79(21):2097–103. doi:10.1212/WNL.0b013e3182752c46.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Gardiner AR, Bhatia KP, Stamelou M, Dale RC, Kurian MA, Schneider SA, et al. PRRT2 gene mutations: from paroxysmal dyskinesia to episodic ataxia and hemiplegic migraine. Neurology. 2012;79(21):2115–21. doi:10.1212/WNL.0b013e3182752c5a.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Gascon GG, Ozand PT, Brismar J. Movement disorders in childhood organic acidurias. Clinical, neuroimaging, and biochemical correlations. Brain Dev. 1994;16 Suppl:94–103.

  20. Hall DA, Ringel SP. Adult nonketotic hyperglycinemia (NKH) crisis presenting as severe chorea and encephalopathy. Mov Disord. 2004;19(4):485–6. doi:10.1002/mds.10681.

    PubMed  Google Scholar 

  21. Morrison PF, Sankar R, Shields WD. Valproate-induced chorea and encephalopathy in atypical nonketotic hyperglycinemia. Pediatr Neurol. 2006;35(5):356–8. doi:10.1016/j.pediatrneurol.2006.06.009.

    PubMed  Google Scholar 

  22. Shulman LM, Lang AE, Jankovic J, David NJ, Weiner WJ. Case 1, 1995: psychosis, dementia, chorea, ataxia, and supranuclear gaze dysfunction. Mov Disord. 1995;10(3):257–62. doi:10.1002/mds.870100304.

    CAS  PubMed  Google Scholar 

  23. Oates CE, Bosch EP, Hart MN. Movement disorders associated with chronic GM2 gangliosidosis. Case report and review of the literature. Eur Neurol. 1986;25(2):154–9.

    CAS  PubMed  Google Scholar 

  24. Prohaska R, Sibon OC, Rudnicki DD, Danek A, Hayflick SJ, Verhaag EM, et al. Brain, blood, and iron: perspectives on the roles of erythrocytes and iron in neurodegeneration. Neurobiol Dis. 2012;46(3):607–24. doi:10.1016/j.nbd.2012.03.006.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Miyajima H. Aceruloplasminemia, an iron metabolic disorder. Neuropathology. 2003;23(4):345–50.

    PubMed  Google Scholar 

  26. Rouault TA. Iron metabolism in the CNS: implications for neurodegenerative diseases. Nat Rev Neurosci. 2013;14(8):551–64. doi:10.1038/nrn3453. This article focuses upon the role of iron in diverse neurological disorders, including Parkinson’s and Alzheimer’s diseases, in addition to the NBIA disorders.

    CAS  PubMed  Google Scholar 

  27. Schneider SA, Zorzi G, Nardocci N. Pathophysiology and treatment of neurodegeneration with brain iron accumulation in the pediatric population. Curr Treat Options Neurol. 2013;15(5):652–67. doi:10.1007/s11940-013-0254-5. This article nicely summarizes this rapidly-expanding field.

    PubMed  Google Scholar 

  28. Goldenberg PC, Steiner RD, Merkens LS, Dunaway T, Egan RA, Zimmerman EA, et al. Remarkable improvement in adult Leigh syndrome with partial cytochrome c oxidase deficiency. Neurology. 2003;60(5):865–8.

    CAS  PubMed  Google Scholar 

  29. Crimi M, Galbiati S, Moroni I, Bordoni A, Perini MP, Lamantea E, et al. A missense mutation in the mitochondrial ND5 gene associated with a Leigh-MELAS overlap syndrome. Neurology. 2003;60(11):1857–61.

    PubMed  Google Scholar 

  30. Caer M, Viala K, Levy R, Maisonobe T, Chochon F, Lombes A, et al. Adult-onset chorea and mitochondrial cytopathy. Mov Disord. 2005;20(4):490–2. doi:10.1002/mds.20363.

    PubMed  Google Scholar 

  31. Morimoto N, Nagano I, Deguchi K, Murakami T, Fushimi S, Shoji M, et al. Leber hereditary optic neuropathy with chorea and dementia resembling Huntington disease. Neurology. 2004;63(12):2451–2.

    CAS  PubMed  Google Scholar 

  32. Kenney C, Powell S, Jankovic J. Autopsy-proven Huntington’s disease with 29 trinucleotide repeats. Mov Disord. 2007;22(1):127–30. doi:10.1002/mds.21195.

    PubMed  Google Scholar 

  33. Rosenblatt A, Liang KY, Zhou H, Abbott MH, Gourley LM, Margolis RL, et al. The association of CAG repeat length with clinical progression in Huntington disease. Neurology. 2006;66(7):1016–20. doi:10.1212/01.wnl.0000204230.16619.d9.

    CAS  PubMed  Google Scholar 

  34. Waldvogel HJ, Kim EH, Thu DC, Tippett LJ, Faull RL. New perspectives on the neuropathology in Huntington’s disease in the human brain and its relation to symptom variation. J Huntingto Dis. 2012;1:143–53.

    Google Scholar 

  35. Wild EJ, Tabrizi SJ. Huntington’s disease phenocopy syndromes. Curr Opin Neurol. 2007;20(6):681–7. doi:10.1097/WCO.0b013e3282f12074.

    PubMed  Google Scholar 

  36. Hensman Moss DJ, Poulter M, Beck J, Hehir J, Polke JM, Campbell T, et al. C9orf72 expansions are the most common genetic cause of Huntington disease phenocopies. Neurology. 2014;82(4):292–9. doi:10.1212/WNL.0000000000000061. This report expands the phenotype of disease related to C9ORF72 mutations.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011;72(2):245–56. doi:10.1016/j.neuron.2011.09.011.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Renton AE, Majounie E, Waite A, Simon-Sanchez J, Rollinson S, Gibbs JR, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 2011;72(2):257–68. doi:10.1016/j.neuron.2011.09.010.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Klockgether T. The clinical diagnosis of autosomal dominant spinocerebellar ataxias. Cerebellum. 2008;7(2):101–5. doi:10.1007/s12311-008-0023-2.

    CAS  PubMed  Google Scholar 

  40. Durr A. Autosomal dominant cerebellar ataxias: polyglutamine expansions and beyond. Lancet Neurol. 2010;9(9):885–94. doi:10.1016/S1474-4422(10)70183-6.

    CAS  PubMed  Google Scholar 

  41. Klein C, Hagenah J, Landwehrmeyer B, Munte T, Klockgether T. The presymptomatic stage of neurodegenerative disorders. Nervenarzt. 2011;82(8):994–1001. doi:10.1007/s00115-011-3258-y.

    CAS  PubMed  Google Scholar 

  42. Namekawa M, Takiyama Y, Ando Y, Sakoe K, Muramatsu SI, Fujimoto KI, et al. Choreiform movements in spinocerebellar ataxia type 1. J Neurol Sci. 2001;187(1–2):103–6.

    CAS  PubMed  Google Scholar 

  43. Geschwind DH, Perlman S, Figueroa CP, Treiman LJ, Pulst SM. The prevalence and wide clinical spectrum of the spinocerebellar ataxia type 2 trinucleotide repeat in patients with autosomal dominant cerebellar ataxia. Am J Hum Genet. 1997;60(4):842–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Rottnek M, Riggio S, Byne W, Sano M, Margolis RL, Walker RH. Schizophrenia in a patient with spinocerebellar ataxia 2: coincidence of two disorders or a neurodegenerative disease presenting with psychosis? Am J Psychiatry. 2008;165(8):964–7. doi:10.1176/appi.ajp.2008.08020285.

    PubMed  Google Scholar 

  45. Lee WW, Kim SY, Kim JY, Kim HJ, Park SS, Jeon BS. Extrapyramidal signs are a common feature of spinocerebellar ataxia type 17. Neurology. 2009;73(20):1708–9. doi:10.1212/WNL.0b013e3181c1df0c.

    PubMed  Google Scholar 

  46. Stevanin G, Fujigasaki H, Lebre AS, Camuzat A, Jeannequin C, Dode C, et al. Huntington’s disease-like phenotype due to trinucleotide repeat expansions in the TBP and JPH3 genes. Brain. 2003;126(Pt 7):1599–603. doi:10.1093/brain/awg155.

    PubMed  Google Scholar 

  47. Le Ber I, Camuzat A, Castelnovo G, Azulay JP, Genton P, Gastaut JL, et al. Prevalence of dentatorubral-pallidoluysian atrophy in a large series of white patients with cerebellar ataxia. Arch Neurol. 2003;60(8):1097–9. doi:10.1001/archneur.60.8.1097.

    PubMed  Google Scholar 

  48. Wardle M, Majounie E, Williams NM, Rosser AE, Morris HR, Robertson NP. Dentatorubral pallidoluysian atrophy in South Wales. J Neurol Neurosurg Psychiatry. 2008;79(7):804–7. doi:10.1136/jnnp.2007.128074.

    CAS  PubMed  Google Scholar 

  49. Burke JR, Wingfield MS, Lewis KE, Roses AD, Lee JE, Hulette C, et al. The Haw River syndrome: dentatorubropallidoluysian atrophy (DRPLA) in an African-American family. Nat Genet. 1994;7(4):521–4. doi:10.1038/ng0894-521.

    CAS  PubMed  Google Scholar 

  50. Holmes SE, O’Hearn E, Rosenblatt A, Callahan C, Hwang HS, Ingersoll-Ashworth RG, et al. A repeat expansion in the gene encoding junctophilin-3 is associated with Huntington disease-like 2. Nat Genet. 2001;29(4):377–8. doi:10.1038/ng760.

    CAS  PubMed  Google Scholar 

  51. Walker RH, Rasmussen A, Rudnicki D, Holmes SE, Alonso E, Matsuura T, et al. Huntington’s disease-like 2 can present as chorea-acanthocytosis. Neurology. 2003;61(7):1002–4.

    CAS  PubMed  Google Scholar 

  52. Margolis RL, Holmes SE, Rosenblatt A, Gourley L, O’Hearn E, Ross CA, et al. Huntington’s disease-like 2 (HDL2) in North America and Japan. Ann Neurol. 2004;56(5):670–4. doi:10.1002/ana.20248.

    CAS  PubMed  Google Scholar 

  53. Walker RH, Jankovic J, O’Hearn E, Margolis RL. Phenotypic features of Huntington’s disease-like 2. Mov Disord. 2003;18(12):1527–30. doi:10.1002/mds.10587.

    PubMed  Google Scholar 

  54. Paucar M, Xiang F, Moore R, Walker R, Winnberg E, Svenningsson P. Genotype-phenotype analysis in inherited prion disease with eight octapeptide repeat insertional mutation. Prion. 2013;7(6).

  55. Curtis AR, Fey C, Morris CM, Bindoff LA, Ince PG, Chinnery PF, et al. Mutation in the gene encoding ferritin light polypeptide causes dominant adult-onset basal ganglia disease. Nat Genet. 2001;28(4):350–4. doi:10.1038/ng571.

    CAS  PubMed  Google Scholar 

  56. Crompton DE, Chinnery PF, Bates D, Walls TJ, Jackson MJ, Curtis AJ, et al. Spectrum of movement disorders in neuroferritinopathy. Mov Disord. 2005;20(1):95–9. doi:10.1002/mds.20284.

    PubMed  Google Scholar 

  57. Kubota A, Hida A, Ichikawa Y, Momose Y, Goto J, Igeta Y, et al. A novel ferritin light chain gene mutation in a Japanese family with neuroferritinopathy: description of clinical features and implications for genotype-phenotype correlations. Mov Disord. 2009;24(3):441–5. doi:10.1002/mds.22435.

    PubMed  Google Scholar 

  58. Manyam BV. What is and what is not ‘Fahr’s disease’. Parkinsonism Relat Disord. 2005;11(2):73–80. doi:10.1016/j.parkreldis.2004.12.001.

    PubMed  Google Scholar 

  59. Nicolas G, Pottier C, Charbonnier C, Guyant-Marechal L, Le Ber I, Pariente J, et al. Phenotypic spectrum of probable and genetically-confirmed idiopathic basal ganglia calcification. Brain. 2013;136(Pt 11):3395–407. doi:10.1093/brain/awt255. This paper updates the literature on “Fahr’s disease”.

    PubMed  Google Scholar 

  60. Kovacs GG, Murrell JR, Horvath S, Haraszti L, Majtenyi K, Molnar MJ, et al. TARDBP variation associated with frontotemporal dementia, supranuclear gaze palsy, and chorea. Mov Disord. 2009;24(12):1843–7. doi:10.1002/mds.22697.

    PubMed  Google Scholar 

  61. Gamez J, Corbera-Bellalta M, Mila M, Lopez-Lisbona R, Boluda S, Ferrer I. Chorea-ballism associated with familial amyotrophic lateral sclerosis. A clinical, genetic, and neuropathological study. Mov Disord. 2008;23(3):434–8. doi:10.1002/mds.21856.

    PubMed  Google Scholar 

  62. Pradat PF, Salachas F, Lacomblez L, Patte N, Leforestier N, Gaura V, et al. Association of chorea and motor neuron disease. Mov Disord. 2002;17(2):419–20.

    PubMed  Google Scholar 

  63. Nielsen TR, Bruhn P, Nielsen JE, Hjermind LE. Behavioral variant of frontotemporal dementia mimicking Huntington’s disease. Int Psychogeriatr. 2010;22(4):674–7. doi:10.1017/S1041610210000098.

    PubMed  Google Scholar 

  64. Verhagen MM, Abdo WF, Willemsen MA, Hogervorst FB, Smeets DF, Hiel JA, et al. Clinical spectrum of ataxia-telangiectasia in adulthood. Neurology. 2009;73(6):430–7. doi:10.1212/WNL.0b013e3181af33bd.

    CAS  PubMed  Google Scholar 

  65. Rampoldi L, Danek A, Monaco AP. Clinical features and molecular bases of neuroacanthocytosis. J Mol Med (Berl). 2002;80(8):475–91. doi:10.1007/s00109-002-0349-z.

    CAS  Google Scholar 

  66. Storch A, Kornhass M, Schwarz J. Testing for acanthocytosis. A prospective reader-blinded study in movement disorder patients. J Neurol. 2005;252(1):84–90. doi:10.1007/s00415-005-0616-3.

    PubMed  Google Scholar 

  67. Rampoldi L, Dobson-Stone C, Rubio JP, Danek A, Chalmers RM, Wood NW, et al. A conserved sorting-associated protein is mutant in chorea-acanthocytosis. Nat Genet. 2001;28(2):119–20. doi:10.1038/88821.

    CAS  PubMed  Google Scholar 

  68. Dobson-Stone C, Danek A, Rampoldi L, Hardie RJ, Chalmers RM, Wood NW, et al. Mutational spectrum of the CHAC gene in patients with chorea-acanthocytosis. Eur J Hum Genet. 2002;10(11):773–81. doi:10.1038/sj.ejhg.5200866.

    CAS  PubMed  Google Scholar 

  69. Velayos-Baeza A, Holinski-Feder E, Neitzel B, Bader B, Critchley EM, Monaco AP, et al. Chorea-acanthocytosis genotype in the original critchley kentucky neuroacanthocytosis kindred. Arch Neurol. 2011;68(10):1330–3. doi:10.1001/archneurol.2011.239.

    PubMed  Google Scholar 

  70. De Franceschi L, Scardoni G, Tomelleri C, Danek A, Walker RH, Jung HH, et al. Computational identification of phospho-tyrosine sub-networks related to acanthocyte generation in neuroacanthocytosis. PLoS One. 2012;7(2):e31015. doi:10.1371/journal.pone.0031015.

    PubMed Central  PubMed  Google Scholar 

  71. De Franceschi L, Tomelleri C, Matte A, Brunati AM, Bovee-Geurts PH, Bertoldi M, et al. Erythrocyte membrane changes of chorea-acanthocytosis are the result of altered Lyn kinase activity. Blood. 2011;118(20):5652–63. doi:10.1182/blood-2011-05-355339.

    PubMed Central  PubMed  Google Scholar 

  72. Slavova-Azmanova NS, Kucera N, Satiaputra J, Stone L, Magno A, Maxwell MJ, et al. Gain-of-function Lyn induces anemia: appropriate Lyn activity is essential for normal erythropoiesis and Epo receptor signaling. Blood. 2013;122(2):262–71. doi:10.1182/blood-2012-10-463158.

    CAS  PubMed  Google Scholar 

  73. Foller M, Hermann A, Gu S, Alesutan I, Qadri SM, Borst O, et al. Chorein-sensitive polymerization of cortical actin and suicidal cell death in chorea-acanthocytosis. FASEB J. 2012;26(4):1526–34. doi:10.1096/fj.11-198317.

    PubMed  Google Scholar 

  74. Schmidt EM, Schmid E, Munzer P, Hermann A, Eyrich AK, Russo A, et al. Chorein sensitivity of cytoskeletal organization and degranulation of platelets. FASEB J. 2013;27(7):2799–806. doi:10.1096/fj.13-229286.

    CAS  PubMed  Google Scholar 

  75. Danek A, Rubio JP, Rampoldi L, Ho M, Dobson-Stone C, Tison F, et al. McLeod neuroacanthocytosis: genotype and phenotype. Ann Neurol. 2001;50(6):755–64.

    CAS  PubMed  Google Scholar 

  76. Rivera A, Kam SY, Ho M, Romero JR, Lee S. Ablation of the Kell/Xk complex alters erythrocyte divalent cation homeostasis. Blood Cells Mol Dis. 2013;50(2):80–5. doi:10.1016/j.bcmd.2012.10.002.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Walker RH. Differential diagnosis of chorea. Curr Neurol Neurosci Rep. 2011;11(4):385–95. doi:10.1007/s11910-011-0202-2.

    PubMed  Google Scholar 

  78. Kandiah N, Tan K, Lim CC, Venketasubramanian N. Hyperglycemic choreoathetosis: role of the putamen in pathogenesis. Mov Disord. 2009;24(6):915–9. doi:10.1002/mds.22277.

    PubMed  Google Scholar 

  79. Wolz M, Reichmann H, Reuner U, Storch A, Gerber J. Hypoglycemia-induced choreoathetosis associated with hyperintense basal ganglia lesions in T1-weighted brain MRI. Mov Disord. 2010;25(7):966–8. doi:10.1002/mds.23112.

    PubMed  Google Scholar 

  80. Ahlskog JE, Nishino H, Evidente VG, Tulloch JW, Forbes GS, Caviness JN, et al. Persistent chorea triggered by hyperglycemic crisis in diabetics. Mov Disord. 2001;16(5):890–8.

    CAS  PubMed  Google Scholar 

  81. Shyambabu C, Sinha S, Taly AB, Vijayan J, Kovoor JM. Serum vitamin B12 deficiency and hyperhomocystinemia: a reversible cause of acute chorea, cerebellar ataxia in an adult with cerebral ischemia. J Neurol Sci. 2008;273(1–2):152–4. doi:10.1016/j.jns.2008.06.034.

    CAS  PubMed  Google Scholar 

  82. Pacchetti C, Cristina S, Nappi G. Reversible chorea and focal dystonia in vitamin B12 deficiency. N Engl J Med. 2002;347(4):295. doi:10.1056/NEJM200207253470417.

    PubMed  Google Scholar 

  83. Bowen J, Mitchell T, Pearce R, Quinn N. Chorea in new variant Creutzfeldt-Jacob disease. Mov Disord. 2000;15(6):1284–5.

    CAS  PubMed  Google Scholar 

  84. McKee D, Talbot P. Chorea as a presenting feature of variant Creutzfeldt-Jakob disease. Mov Disord. 2003;18(7):837–8. doi:10.1002/mds.10423.

    PubMed  Google Scholar 

  85. Passarin MG, Alessandrini F, Nicolini GG, Musso A, Gambina G, Moretto G. Reversible choreoathetosis as the early onset of HIV-encephalopathy. Neurol Sci. 2005;26(1):55–6. doi:10.1007/s10072-005-0384-y.

    CAS  PubMed  Google Scholar 

  86. Sporer B, Linke R, Seelos K, Paul R, Klopstock T, Pfister HW. HIV-induced chorea: evidence for basal ganglia dysregulation by SPECT. J Neurol. 2005;252(3):356–8. doi:10.1007/s00415-005-0626-1.

    CAS  PubMed  Google Scholar 

  87. Ozben S, Erol C, Ozer F, Tiras R. Chorea as the presenting feature of neurosyphilis. Neurol India. 2009;57(3):347–9. doi:10.4103/0028-3886.53277.

    PubMed  Google Scholar 

  88. Font J, Cervera R, Espinosa G, Pallares L, Ramos-Casals M, Jimenez S, et al. Systemic lupus erythematosus (SLE) in childhood: analysis of clinical and immunological findings in 34 patients and comparison with SLE characteristics in adults. Ann Rheum Dis. 1998;57(8):456–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Watanabe T, Onda H. Hemichorea with antiphospholipid antibodies in a patient with lupus nephritis. Pediatr Nephrol. 2004;19(4):451–3. doi:10.1007/s00467-003-1388-6.

    PubMed  Google Scholar 

  90. Venegas Fanchke P, Sinning M, Miranda M. Primary Sjogren’s syndrome presenting as a generalized chorea. Parkinsonism Relat Disord. 2005;11(3):193–4. doi:10.1016/j.parkreldis.2004.10.006.

    CAS  PubMed  Google Scholar 

  91. Ciubotaru CR, Esfahani F, Benedict RH, Wild LM, Baer AN. Chorea and rapidly progressive subcortical dementia in antiphospholipid syndrome. J Clin Rheumatol. 2002;8(6):332–9.

    PubMed  Google Scholar 

  92. Kumar H, Masiowski P, Jog M. Chorea in the elderly with mutation positive polycythemia vera: a case report. Can J Neurol Sci. 2009;36(3):370–2.

    PubMed  Google Scholar 

  93. Lew J, Frucht SJ, Kremyanskaya M, Hoffman R, Mascarenhas J. Hemichorea in a patient with JAK2V617F blood cells. Blood. 2013;121(7):1239–40. doi:10.1182/blood-2012-12-468751.

    CAS  PubMed  Google Scholar 

  94. Walker RH. Chorea: differential diagnosis and treatment In: Espay A, editor. Movement disorders. American Academy of Neurology. 2013. p. 1242–63.

  95. Ramdhani RA, Frucht SJ. Isolated chorea associated with LGI1 antibody. Tremor Other Hyperkinet Mov (N Y). 2014;4. doi:10.7916/D8MG7MFC.

  96. Honnorat J, Cartalat-Carel S, Ricard D, Camdessanche JP, Carpentier AF, Rogemond V, et al. Onco-neural antibodies and tumour type determine survival and neurological symptoms in paraneoplastic neurological syndromes with Hu or CV2/CRMP5 antibodies. J Neurol Neurosurg Psychiatry. 2009;80(4):412–6. doi:10.1136/jnnp.2007.138016.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Dorban S, Gille M, Kessler R, Pieret F, Declercq I, Sindic CJ. Chorea-athetosis in the anti-Hu syndrome. Rev Neurol (Paris). 2004;160(1):126–9.

    CAS  Google Scholar 

  98. Krolak-Salmon P, Androdias G, Meyronet D, Aguera M, Honnorat J, Vighetto A. Slow evolution of cerebellar degeneration and chorea in a man with anti-Yo antibodies. Eur J Neurol. 2006;13(3):307–8. doi:10.1111/j.1468-1331.2006.01152.x.

    CAS  PubMed  Google Scholar 

  99. Vincent A, Bien CG. Anti-NMDA-receptor encephalitis: a cause of psychiatric, seizure, and movement disorders in young adults. Lancet Neurol. 2008;7(12):1074–5. doi:10.1016/S1474-4422(08)70225-4.

    PubMed  Google Scholar 

  100. Dalmau J, Tuzun E, Wu HY, Masjuan J, Rossi JE, Voloschin A, et al. Paraneoplastic anti-N-methyl-D-aspartate receptor encephalitis associated with ovarian teratoma. Ann Neurol. 2007;61(1):25–36. doi:10.1002/ana.21050.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Garvey MA, Snider LA, Leitman SF, Werden R, Swedo SE. Treatment of Sydenham’s chorea with intravenous immunoglobulin, plasma exchange, or prednisone. J Child Neurol. 2005;20(5):424–9.

    PubMed  Google Scholar 

  102. Armstrong MJ, Miyasaki JM. Evidence-based guideline: pharmacologic treatment of chorea in Huntington disease: report of the guideline development subcommittee of the American Academy of Neurology. Neurology. 2012;79(6):597–603. doi:10.1212/WNL.0b013e318263c443.

    PubMed Central  PubMed  Google Scholar 

  103. Reilmann R. Pharmacological treatment of chorea in Huntington’s disease-good clinical practice versus evidence-based guideline. Mov Disord. 2013;28(8):1030–3. doi:10.1002/mds.25500. This is an important discussion of the treatment of chorea and current controversies.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Biolsi B, Cif L, Fertit HE, Robles SG, Coubes P. Long-term follow-up of Huntington disease treated by bilateral deep brain stimulation of the internal globus pallidus. J Neurosurg. 2008;109(1):130–2. doi:10.3171/JNS/2008/109/7/0130.

    PubMed  Google Scholar 

  105. Kang GA, Heath S, Rothlind J, Starr PA. Long-term follow-up of pallidal deep brain stimulation in two cases of Huntington’s disease. J Neurol Neurosurg Psychiatry. 2011;82(3):272–7. doi:10.1136/jnnp.2009.202903.

    PubMed  Google Scholar 

  106. Kaufman CB, Mink JW, Schwalb JM. Bilateral deep brain stimulation for treatment of medically refractory paroxysmal nonkinesigenic dyskinesia. J Neurosurg. 2010;112(4):847–50. doi:10.3171/2009.9.JNS09454.

    PubMed  Google Scholar 

  107. Cicchetti F, Saporta S, Hauser RA, Parent M, Saint-Pierre M, Sanberg PR, et al. Neural transplants in patients with Huntington’s disease undergo disease-like neuronal degeneration. Proc Natl Acad Sci U S A. 2009;106(30):12483–8. doi:10.1073/pnas.0904239106.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Bachoud-Levi AC, Gaura V, Brugieres P, Lefaucheur JP, Boisse MF, Maison P, et al. Effect of fetal neural transplants in patients with Huntington’s disease 6 years after surgery: a long-term follow-up study. Lancet Neurol. 2006;5(4):303–9. doi:10.1016/S1474-4422(06)70381-7.

    PubMed  Google Scholar 

  109. Miquel M, Spampinato U, Latxague C, Aviles-Olmos I, Bader B, Bertram K, et al. Short and long term outcome of bilateral pallidal stimulation in chorea-acanthocytosis. PLoS One. 2013;8(11):e79241. doi:10.1371/journal.pone.0079241. Certain symptoms of chorea-acanthocytosis can be ameliorated by deep brain stimulation, as presented in this series of all known cases. A randomized, controlled study is unlikely to ever be performed in this rare disease.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Cubo E, Shannon KM, Tracy D, Jaglin JA, Bernard BA, Wuu J, et al. Effect of donepezil on motor and cognitive function in Huntington disease. Neurology. 2006;67(7):1268–71. doi:10.1212/01.wnl.0000238106.10423.00.

    CAS  PubMed  Google Scholar 

  111. Mestre T, Ferreira J, Coelho MM, Rosa M, Sampaio C. Therapeutic interventions for disease progression in Huntington’s disease. Cochrane Database Syst Rev. 2009;3, CD006455. doi:10.1002/14651858.CD006455.pub2.

    PubMed  Google Scholar 

  112. HORIZON Investigators of the Huntington Study Group and European Huntington's Disease Network. A randomized, double-blind, placebo-controlled study of latrepirdine in patients with mild to moderate Huntington disease. JAMA Neurol. 2013;70(1):25–33. doi:10.1001/2013.jamaneurol.382.

  113. de Yebenes JG, Landwehrmeyer B, Squitieri F, Reilmann R, Rosser A, Barker RA, et al. Pridopidine for the treatment of motor function in patients with Huntington’s disease (MermaiHD): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2011;10(12):1049–57. doi:10.1016/S1474-4422(11)70233-2.

    PubMed  Google Scholar 

  114. The Huntington Study Group HART Investigators. A randomized, double-blind, placebo-controlled trial of pridopidine in Huntington’s disease. Mov Disord. 2013;28(10):1407–15. doi:10.1002/mds.25362.

  115. Myers RH, Sax DS, Koroshetz WJ, Mastromauro C, Cupples LA, Kiely DK, et al. Factors associated with slow progression in Huntington’s disease. Arch Neurol. 1991;48(8):800–4.

    CAS  PubMed  Google Scholar 

  116. Aziz NA, van der Burg JM, Landwehrmeyer GB, Brundin P, Stijnen T, Roos RA. Weight loss in Huntington disease increases with higher CAG repeat number. Neurology. 2008;71(19):1506–13. doi:10.1212/01.wnl.0000334276.09729.0e.

    CAS  PubMed  Google Scholar 

  117. Marder K, Zhao H, Eberly S, Tanner CM, Oakes D, Shoulson I. Dietary intake in adults at risk for Huntington disease: analysis of PHAROS research participants. Neurology. 2009;73(5):385–92. doi:10.1212/WNL.0b013e3181b04aa2.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Andreas Hermann has received an official grant from the Federal Ministry of Education and Research for Research on Chorea acanthocytosis.

Ruth H. Walker has received honoraria from the American Academy of Neurology for speaking at the annual meeting.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth H. Walker.

Additional information

This article is part of the Topical Collection on Movement Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hermann, A., Walker, R.H. Diagnosis and Treatment of Chorea Syndromes. Curr Neurol Neurosci Rep 15, 1 (2015). https://doi.org/10.1007/s11910-014-0514-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-014-0514-0

Keywords

Navigation