Skip to main content

Advertisement

Log in

ERG variability in X-linked congenital retinoschisis patients with mutations in the RS1 gene and the diagnostic importance of fundus autofluorescence and OCT

  • Original Research Article
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Purpose X-linked congenital retinoschisis (RS) is a relatively frequent retinal dystrophy associated with RS1 gene mutations. A negative electroretinogram (ERG), i.e., a b/a wave ratio <1.0 in the standard combined response, is considered a key diagnostic feature of RS. Only a few cases without a negative ERG have been reported. Methods This study includes 24 RS patients with RS1 mutations. ERGs (according to ISCEV standards, n = 23), ON-OFF-responses (n = 9), fundus autofluorescence (FAF, n = 8), and optical coherence tomography (OCT, n = 6) were performed. Results The mean age at examination was 22.6 years (0.5–53.2 years), and median visual acuity was 0.3 (no light perception to 0.6). A negative ERG was found in 13 of 23 patients (56.5%), of whom one patient presented a negative ERG at the 2-year follow-up, with an initial b/a wave ratio >1.0. Another patient had a b/a wave ratio of 0.96 in one eye and 1.02 in the fellow eye. In 10 of 23 patients, the b/a wave ratio ranged from 1.03 to 1.34. Single-flash cone and 30 Hz flicker responses were always reduced. FAF and OCT were pathologic in all patients tested. FAF was increased in the fovea. OCT revealed foveal schisis to various degrees and thinning of the retina in an older patient. Conclusions Although ERG abnormalities were detected in all patients tested, more than 40% of patients with RS1 mutations did not have a negative ERG. In clinically suspected RS a combination of ERG, FAF, OCT, and molecular-genetic testing is advised to verify the diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sauer GS, Gehrig A, Warneke-Wittstock R, Marquardt A, Ewing CC, Gibson A, Lorenz B, Jurklies B, Weber BH (1997) Positional cloning of the gene associated with X-linked juvenile retinoschisis. Nat Genet 17:164–170

    Article  PubMed  CAS  Google Scholar 

  2. Molday LL, Hicks D, Sauer CG, Weber BH, Molday RS (2001) Expression of X-linked retinoschisis protein RS1 in photoreceptor and bipolar cells. Invest Ophthalmol Vis Sci 42:816–825

    PubMed  CAS  Google Scholar 

  3. Yanoff M, Rahn EK, Zimmermann LE (1968) Histopathology of juvenile retinoschisis. Arch Ophthalmol 79:49–53

    PubMed  CAS  Google Scholar 

  4. Manschot WA (1972) Pathology of hereditary juvenile retinoschisis. Arch Ophthalmol 88:131–138

    PubMed  CAS  Google Scholar 

  5. Condon GP, Brownstein S, Wang NS, Kearns AF, Ewing CC (1986) Congenital hereditary (juvenile X-linked) retinoschisis. Histopathologic and ultrastructural findings in three eyes. Arch Ophthalmol 104:576–583

    PubMed  CAS  Google Scholar 

  6. Deutman AF (1971) Sex-linked juvenile retinoschisis. In: Deutman AF (ed) The hereditary dystrophies of the posterior pole of the eye. Van Gorcum, Assen

    Google Scholar 

  7. Kellner U, Brummer S, Foerster MH, Wessing A (1990) X-linked congenital retinoschisis. Graefes Arch Clin Exp Ophthalmol 228:432–437

    Article  PubMed  CAS  Google Scholar 

  8. George ND, Yates JR, Moore A (1996) Clinical features in affected males with X-linked retinoschisis. Arch Ophthalmol 114:274–280

    PubMed  CAS  Google Scholar 

  9. Bradshaw K, George N, Moore A, Trump D (1999) Mutations of the XLRS1 gene cause abnormalities of photoreceptor as well as inner retinal responses of the ERG. Doc Ophthalmol 98:153–173

    Article  PubMed  CAS  Google Scholar 

  10. Eksandh LC, Ponjavic V, Ayyagari R, Bingham EL, Hiriyanna KT, Andréasson S, Ehinger B, Sieving PA (2000) Phenotypic expression of juvenile X-linked retinoschisis in Swedish families with different mutations in the XLRS1 gene. Arch Ophthalmol 118:1098–1104

    PubMed  CAS  Google Scholar 

  11. Nakamura M, Ito S, Terasaki H, Miyake Y (2001) Japanese X-linked juvenile retinoschisis: conflict of phenotype and genotype with novel mutations in the XLRS1 gene. Arch Ophthalmol 119:1553–1554

    PubMed  CAS  Google Scholar 

  12. Pimenides D, George NDL, Yates JRW, Bradshaw K, Roberts SA, Moore AT, Trump D (2005) X-linked retinoschisis: clinical phenotype and RS1 genotype in 86 UK patients. J Med Genet 42:e35

    Article  PubMed  CAS  Google Scholar 

  13. Simonelli F, Cennamo G, Ziviello C, Testa F, Crecchio Gd, Nesti A, Manitto MP, Ciccodicola A, Banfi S, Brancato R, Rinaldi E (2003) Clinical features of X-linked juvenile retinoschisis associated with new mutations in the XLRS1 gene in Italian families. Br J Ophthalmol 87:1130–1134

    Article  PubMed  CAS  Google Scholar 

  14. Iannaccone A, Mura M, Dyka FM, Ciccarelli ML, Yashar BM, Ayyagari R, Jablonski MM, Molday RS (2006) An unusual X-linked retinoschisis phenotype and biochemical characterization of the W112C RS1 mutation. Vision Res 46:3845–3852

    Article  PubMed  CAS  Google Scholar 

  15. Karpe G (1945) The basis of clinical electroretinography. Acta Ophthalmol Suppl 24:1–118

    Google Scholar 

  16. Weleber RG, Francis PJ (2006) Differential diagnosis of the electronegative electroretinogram. In: Heckenlively JR, Arden GB (eds) Principles and practice of clinical electrophysiology of vision. The MIT Press, Cambridge

    Google Scholar 

  17. Bradshaw K, Allen L, Trump D, Hardcastle AJ, George N, Moore A (2004) A comparison of ERG abnormalities in XLRS and XLCSNB. Doc Ophthalmol 108:135–145

    Article  PubMed  Google Scholar 

  18. Eriksson U, Larsson E, Holmström G (2004) Optical coherence tomography in the diagnosis of juvenile X-linked retinoschisis. Acta Ophthalmol Scand 82:218–223

    Article  PubMed  Google Scholar 

  19. Eksandh LC, Andréasson S, Abrahamson M (2005) Juvenile X-linked retinoschisis with normal scotopic b-wave in the electroretinogram at an early stage of the disease. Opthalmic Genet 26:111–117

    Article  Google Scholar 

  20. Sieving PA, Bingham EL, Kemp J, Richards J, Hiriyanna K (1999) Juvenile X-linked retinoschisis from XLRS1 Arg213Trp mutation with preservation of the electroretinogram scotopic b-wave. Am J Ophthalmol 128:179–184

    Article  PubMed  CAS  Google Scholar 

  21. Apushkin MA, Fishman GA, Janowicz MJ (2005) Correlation of optical coherence tomography findings with visual acuity and macular lesions in patients with X-linked retinoschisis. Ophthalmology 112:495–501

    Article  PubMed  Google Scholar 

  22. Chan WM, Choy KW, Wang J, Lam DSC, Yip WWK, Fu W, Pang CP (2004) Two cases of X-linked juvenile retinoschisis with different optical coherence tomography findings and RS1 gene mutations. Clin Exp Ophthalmol 32:429–432

    Article  Google Scholar 

  23. Hayashi T, Omoto S, Takeuchi T, Kozaki K, Ueoka Y, Kitahara K (2004) Four Japanese male patients with juvenile retinoschisis: only three have mutations in the RS1 gene. Am J Ophthalmol 138:788–798

    Article  PubMed  CAS  Google Scholar 

  24. Koh AH, Hogg CR, Holder GE (2001) The incidence of negative ERG in clinical practice. Doc Ophthalmol 102:19–30

    Article  PubMed  CAS  Google Scholar 

  25. Renner AB, Kellner U, Cropp E, Foerster MH (2006) Dysfunction of transmission in the inner retina: incidence and clinical causes of negative electroretinogram. Graefes Arch Clin Exp Ophthalmol 244:1467–1473

    Article  PubMed  Google Scholar 

  26. Peachey NS, Fishman GA, Derlacki DJ, Brigell MG (1987) Psychophysical and electroretinographic findings in X-linked juvenile retinoschisis. Arch Ophthalmol 105:513–516

    PubMed  CAS  Google Scholar 

  27. Tantri A, Vrabec TR, Cu-Unjieng A, Frost A, Annesley WH, Donoso LA (2004) X-linked retinoschisis: a clinical and molecular genetic review. Surv Ophthalmol 49:214–230

    Article  PubMed  Google Scholar 

  28. Renner AB, Tillack H, Kraus H, Kramer F, Mohr N, Weber BH, Foerster MH, Kellner U (2005) Late onset is common in best macular dystrophy associated with VMD2 gene mutations. Ophthalmology 112:586–592

    Article  PubMed  Google Scholar 

  29. Marmor MF, Holder GE, Seeliger MW, Yamamoto S (2004) Standard for clinical electroretinography (2004 update). Doc Ophthalmol 108:107–114

    Article  PubMed  Google Scholar 

  30. Kellner U, Bornfeld N, Foerster MH (1995) Severe course of cutaneous melanoma associated paraneoplastic retinopathy. Br J Ophthalmol 79:746–752

    Article  PubMed  CAS  Google Scholar 

  31. Ruether K, Kellner U (1998) Inner retinal function in hereditary retinal dystrophies. Acta Anat (Basel) 162:169–177

    Article  CAS  Google Scholar 

  32. Consortium TR (1998) Functional implications of the spectrum of mutations found in 234 cases with X-linked juvenile retinoschisis (XLRS). Hum Mol Genet 7:1185–1192

    Article  Google Scholar 

  33. Gehrig A, Janssen A, Horling F, Grimm C, Weber BH (2006) The role of caspases in photoreceptor cell death of the retinoschisin-deficient mouse. Cytogenet Genome Res 115:35–44

    Article  PubMed  CAS  Google Scholar 

  34. Kjellstrom S, Bush RA, Zeng Y, Takada Y, Sieving PA (2007) Retinoschisin gene therapy and natural history in the Rs1h-KO mouse: long-term rescue from retinal degeneration. Invest Ophthalmol Vis Sci 48:3837–3845

    Article  PubMed  Google Scholar 

  35. Stanga PE, Chong NH, Reck AC, Hardcastle AJ, Holder GE (2001) Optical coherence tomography and electrophysiology in X-linked juvenile retinoschisis associated with a novel mutation in the XLRS1 gene. Retina 21:78–80

    Article  PubMed  CAS  Google Scholar 

  36. Alexander KR, Fishman GA, Barnes CS, Grover S (2001) On-response deficit in the electroretinogram of the cone system in X-linked retinoschisis. Invest Ophthalmol Vis Sci 42:453–459

    PubMed  CAS  Google Scholar 

  37. Alexander KR, Barnes CS, Fishman GA (2001) High-frequency attenuation of the cone ERG and ON-response deficits in X-linked retinoschisis. Invest Ophthalmol Vis Sci 42:2094–2101

    PubMed  CAS  Google Scholar 

  38. Shinoda K, Ohde H, Mashima Y, Inoue R, Ishida S, Inoue M, Kawashima S, Oguchi Y (2001) On- and off-responses of the photopic electroretinograms in X-linked juvenile retinoschisis. Am J Ophthalmol 131:489–494

    Article  PubMed  CAS  Google Scholar 

  39. Khan NW, Jamison JA, Kemp JA, Sieving PA (2001) Analysis of photoreceptor function and inner retinal activity in juvenile X-linked retinoschisis. Vision Res 41:3931–3942

    Article  PubMed  CAS  Google Scholar 

  40. Weber BH, Schrewe H, Molday LL, Gehrig A, White KL, Seeliger MW, Jaissie GB, Friedburg C, Tamm E, Molday RS (2002) Inactivation of the murine X-linked juvenile retinoschisis gene, Rs1h, suggests a role of retinoschisin in retinal cell layer organization and synaptic structure. Proc Natl Acad Sci USA 99:6222–6227

    Article  PubMed  CAS  Google Scholar 

  41. Azzolini C, Pierro L, Codenotti M, Brancato R (1997) OCT images and surgery of juvenile macular retinoschisis. Eur J Ophthalmol 7:196–200

    PubMed  CAS  Google Scholar 

  42. Muscat S, Fahad B, Parks S, Keating D (2001) Optical coherence tomography and multifocal electroretinography of X-linked juvenile retinoschisis. Eye 15:796–799

    PubMed  CAS  Google Scholar 

  43. Prenner JL, Capone A Jr, Ciaccia S, Takada Y, Sieving PA, Trese MT (2006) Congenital X-linked retinoschisis classification system. Retina 26:61–64

    Article  Google Scholar 

  44. Delori FC, Dorey CK, Staurenghi G, Arend O, Goger DG, Weiter JJ (1995) In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics. Invest Ophthalmol Vis Sci 36:718–729

    PubMed  CAS  Google Scholar 

  45. von Ruckmann A, Fitzke FW, Bird AC (1997) In vivo fundus autofluorescence in macular dystrophies. Arch Ophthalmol 115:609–615

    Google Scholar 

  46. Kellner U (2006) Fundus autofluorescence. In: Heimann H, Kellner U, Foerster MH (eds) Atlas of fundus angiography. Thieme, Stuttgart

    Google Scholar 

  47. Wabbels B, Demmler A, Paunescu K, Wegscheider E, Preising MN, Lorenz B (2006) Fundus autofluorescence in children and teenagers with hereditary retinal diseases. Graefes Arch Clin Exp Ophthalmol 244:36–45

    Article  PubMed  Google Scholar 

  48. Tsang SH, Vaclavik V, Bird AC, Robson AG, Holder GE (2007) Novel phenotypic and genotypic findings in X-linked retinoschisis. Arch Ophthalmol 125:259–267

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported in part by the Deutsche Forschungsgemeinschaft, Bonn, Germany (grant numbers KE 442/11-1,2 and WE 1259/12-3). The authors acknowledge the help of W. Berger and his group for performing mutational analysis in three of our patients, already published in The Retinoschisis Consortium, Group 5, 1998 [32].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnes B. Renner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Renner, A.B., Kellner, U., Fiebig, B. et al. ERG variability in X-linked congenital retinoschisis patients with mutations in the RS1 gene and the diagnostic importance of fundus autofluorescence and OCT. Doc Ophthalmol 116, 97–109 (2008). https://doi.org/10.1007/s10633-007-9094-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-007-9094-5

Keywords

Navigation