Skip to main content

Advertisement

Log in

Genetic alterations in uncommon low-grade neuroepithelial tumors: BRAF, FGFR1, and MYB mutations occur at high frequency and align with morphology

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Low-grade neuroepithelial tumors (LGNTs) are diverse CNS tumors presenting in children and young adults, often with a history of epilepsy. While the genetic profiles of common LGNTs, such as the pilocytic astrocytoma and ‘adult-type’ diffuse gliomas, are largely established, those of uncommon LGNTs remain to be defined. In this study, we have used massively parallel sequencing and various targeted molecular genetic approaches to study alterations in 91 LGNTs, mostly from children but including young adult patients. These tumors comprise dysembryoplastic neuroepithelial tumors (DNETs; n = 22), diffuse oligodendroglial tumors (d-OTs; n = 20), diffuse astrocytomas (DAs; n = 17), angiocentric gliomas (n = 15), and gangliogliomas (n = 17). Most LGNTs (84 %) analyzed by whole-genome sequencing (WGS) were characterized by a single driver genetic alteration. Alterations of FGFR1 occurred frequently in LGNTs composed of oligodendrocyte-like cells, being present in 82 % of DNETs and 40 % of d-OTs. In contrast, a MYB-QKI fusion characterized almost all angiocentric gliomas (87 %), and MYB fusion genes were the most common genetic alteration in DAs (41 %). A BRAF:p.V600E mutation was present in 35 % of gangliogliomas and 18 % of DAs. Pathogenic alterations in FGFR1/2/3, BRAF, or MYB/MYBL1 occurred in 78 % of the series. Adult-type d-OTs with an IDH1/2 mutation occurred in four adolescents, the youngest aged 15 years at biopsy. Despite a detailed analysis, novel genetic alterations were limited to two fusion genes, EWSR1-PATZ1 and SLMAP-NTRK2, both in gangliogliomas. Alterations in BRAF, FGFR1, or MYB account for most pathogenic alterations in LGNTs, including pilocytic astrocytomas, and alignment of these genetic alterations and cytologic features across LGNTs has diagnostic implications. Additionally, therapeutic options based upon targeting the effects of these alterations are already in clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alvarez-Cubero MJ, Saiz M, Martinez-Gonzalez LJ, Alvarez JC, Lorente JA, Cozar JM (2013) Genetic analysis of the principal genes related to prostate cancer: a review. Urol Oncol 31:1419–1429. doi:10.1016/j.urolonc.2012.07.011

    Article  CAS  PubMed  Google Scholar 

  2. Anderson JL, Gutmann DH (2015) Neurofibromatosis type 1. Handb Clin Neurol 132:75–86. doi:10.1016/B978-0-444-62702-5.00004-4

    Article  PubMed  Google Scholar 

  3. Andre F, Bachelot T, Campone M, Dalenc F, Perez-Garcia JM, Hurvitz SA et al (2013) Targeting FGFR with dovitinib (TKI258): preclinical and clinical data in breast cancer. Clin Cancer Res 19:3693–3702. doi:10.1158/1078-0432.CCR-13-0190

    Article  CAS  PubMed  Google Scholar 

  4. Bandopadhayay P, Bergthold G, London WB, Goumnerova LC, Morales La Madrid A, Marcus KJ et al (2014) Long-term outcome of 4,040 children diagnosed with pediatric low-grade gliomas: an analysis of the Surveillance Epidemiology and End Results (SEER) database. Pediatr Blood Cancer 61:1173–1179. doi:10.1002/pbc.24958

    Article  PubMed  PubMed Central  Google Scholar 

  5. Becker AP, Scapulatempo-Neto C, Carloni AC, Paulino A, Sheren J, Aisner DL et al (2015) KIAA1549: BRAF Gene Fusion and FGFR1 Hotspot Mutations Are Prognostic Factors in Pilocytic Astrocytomas. J Neuropathol Exp Neurol 74:743–754. doi:10.1097/NEN.0000000000000213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bird-Lieberman G, Sethi K, Childs AM, Chumas P, Crimmins D, Ismail A et al (2011) Diffuse hemispheric dysembryoplastic neuroepithelial tumor: a new radiological variant associated with early-onset severe epilepsy. J Neurosurg Pediatr 7:416–420. doi:10.3171/2011.1.PEDS10258

    Article  PubMed  Google Scholar 

  7. Blumcke I, Aronica E, Urbach H, Alexopoulos A, Gonzalez-Martinez JA (2014) A neuropathology-based approach to epilepsy surgery in brain tumors and proposal for a new terminology use for long-term epilepsy-associated brain tumors. Acta Neuropathol 128:39–54. doi:10.1007/s00401-014-1288-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brat DJ, Verhaak RG, Aldape KD, Yung WK, Salama SR, Cooper LA et al (2015) Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med 372:2481–2498. doi:10.1056/NEJMoa1402121

    Article  CAS  PubMed  Google Scholar 

  9. Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR et al (2013) The somatic genomic landscape of glioblastoma. Cell 155:462–477. doi:10.1016/j.cell.2013.09.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chappé C, Padovani L, Scavarda D, Forest F, Nanni-Metellus I, Loundou A et al (2013) Dysembryoplastic neuroepithelial tumors share with pleomorphic xanthoastrocytomas and gangliogliomas BRAF(V600E) mutation and expression. Brain Pathol 23:574–583. doi:10.1111/bpa.12048

    Article  PubMed  Google Scholar 

  11. Clappier E, Cuccuini W, Kalota A, Crinquette A, Cayuela JM, Dik WA et al (2007) The C-MYB locus is involved in chromosomal translocation and genomic duplications in human T-cell acute leukemia (T-ALL), the translocation defining a new T-ALL subtype in very young children. Blood 110:1251–1261

    Article  CAS  PubMed  Google Scholar 

  12. Cruz GR, Dias Oliveira I, Moraes L, Del Giudice Paniago M, de Seixas Alves MT, Capellano AM et al (2014) Analysis of KIAA1549-BRAF fusion gene expression and IDH1/IDH2 mutations in low grade pediatric astrocytomas. J Neurooncol 117:235–242. doi:10.1007/s11060-014-1398-1

    Article  CAS  PubMed  Google Scholar 

  13. Cummings TJ, Bridge JA, Fukushima T (2004) Extraskeletal myxoid chondrosarcoma of the jugular foramen. Clin Neuropathol 23:232–237

    CAS  PubMed  Google Scholar 

  14. Daumas-Duport C (1993) Dysembryoplastic neuroepithelial tumours. Brain Pathol 3:283–295

    Article  CAS  PubMed  Google Scholar 

  15. Dougherty MJ, Santi M, Brose MS, Ma C, Resnick AC, Sievert AJ et al (2010) Activating mutations in BRAF characterize a spectrum of pediatric low-grade gliomas. Neuro Oncol 12:621–630. doi:10.1093/neuonc/noq007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Driver BR, Portier BP, Mody DR, Deavers M, Bernicker EH, Kim MP et al (2015) Next-generation sequencing of a cohort of pulmonary large cell carcinomas reclassified by World Health Organization 2015 criteria. Arch Pathol Lab Med. doi:10.5858/arpa.2015-0361-OA

    Google Scholar 

  17. Dudley RW, Torok MR, Gallegos DR, Mulcahy-Levy JM, Hoffman LM, Liu AK, et al (2015) Pediatric low-grade ganglioglioma: epidemiology, treatments, and outcome analysis on 348 children from the surveillance, epidemiology, and end results database. Neurosurgery 76:313–319. doi:10.1227/NEU.0000000000000619 (discussion 319; quiz 319–320)

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dunham C, Hussong J, Seiff M, Pfeifer J, Perry A (2008) Primary intracerebral angiomatoid fibrous histiocytoma: report of a case with a t(12;22)(q13;q12) causing type 1 fusion of the EWS and ATF-1 genes. Am J Surg Pathol 32:478–484. doi:10.1097/PAS.0b013e3181453451

    Article  PubMed  Google Scholar 

  19. Eckel-Passow JE, Lachance DH, Molinaro AM, Walsh KM, Decker PA, Sicotte H et al (2015) Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med 372:2499–2508. doi:10.1056/NEJMoa1407279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ellison DW, Kocak M, Dalton J, Megahed H, Lusher ME, Ryan SL et al (2011) Definition of disease-risk stratification groups in childhood medulloblastoma using combined clinical, pathologic, and molecular variables. J Clin Oncol 29:1400–1407. doi:10.1200/JCO.2010.30.2810

    Article  PubMed  PubMed Central  Google Scholar 

  21. Feng Y, Bankston A (2010) The star family member QKI and cell signaling. Adv Exp Med Biol 693:25–36

    Article  CAS  PubMed  Google Scholar 

  22. Forshew T, Tatevossian RG, Lawson AR, Ma J, Neale G, Ogunkolade BW et al (2009) Activation of the ERK/MAPK pathway: a signature genetic defect in posterior fossa pilocytic astrocytomas. J Pathol 218:172–181

    Article  CAS  PubMed  Google Scholar 

  23. Frattini V, Trifonov V, Chan JM, Castano A, Lia M, Abate F et al (2013) The integrated landscape of driver genomic alterations in glioblastoma. Nat Genet 45:1141–1149. doi:10.1038/ng.2734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huse JT, Rosenblum MK (2015) The emerging molecular foundations of pediatric brain tumors. J Child Neurol 30:1838–1850. doi:10.1177/0883073815579709

    Article  PubMed  Google Scholar 

  25. Jones DT, Hutter B, Jager N, Korshunov A, Kool M, Warnatz HJ et al (2013) Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat Genet 45:927–932. doi:10.1038/ng.2682

  26. Jones DT, Mulholland SA, Pearson DM, Malley DS, Openshaw SW, Lambert SR et al (2011) Adult grade II diffuse astrocytomas are genetically distinct from and more aggressive than their paediatric counterparts. Acta Neuropathol 121:753–761. doi:10.1007/s00401-011-0810-6

    Article  PubMed  Google Scholar 

  27. Kauraniemi P, Hedenfalk I, Persson K, Duggan DJ, Tanner M, Johannsson O et al (2000) MYB oncogene amplification in hereditary BRCA1 breast cancer. Cancer Res 60:5323–5328

    CAS  PubMed  Google Scholar 

  28. Keskin N, Deniz E, Eryilmaz J, Un M, Batur T, Ersahin T et al (2015) PATZ1 is a DNA damage-responsive transcription factor that inhibits p53 function. Mol Cell Biol 35:1741–1753. doi:10.1128/MCB.01475-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lahortiga I, De Keersmaecker K, Van Vlierberghe P, Graux C, Cauwelier B, Lambert F et al (2007) Duplication of the MYB oncogene in T cell acute lymphoblastic leukemia. Nat Genet 39:593–595

    Article  CAS  PubMed  Google Scholar 

  30. Lannon CL, Martin MJ, Tognon CE, Jin W, Kim SJ, Sorensen PH (2004) A highly conserved NTRK3 C-terminal sequence in the ETV6-NTRK3 oncoprotein binds the phosphotyrosine binding domain of insulin receptor substrate-1: an essential interaction for transformation. J Biol Chem 279:6225–6234. doi:10.1074/jbc.M307388200

    Article  CAS  PubMed  Google Scholar 

  31. Lin WM, Baker AC, Beroukhim R, Winckler W, Feng W, Marmion JM et al (2008) Modeling genomic diversity and tumor dependency in malignant melanoma. Cancer Res 68:664–673. doi:10.1158/0008-5472.CAN-07-2615

    Article  CAS  PubMed  Google Scholar 

  32. Louis DN, Perry A, Burger P, Ellison DW, Reifenberger G, von Deimling A et al (2014) International Society Of Neuropathology-Haarlem consensus guidelines for nervous system tumor classification and grading. Brain Pathol 24:429–435. doi:10.1111/bpa.12171

    Article  PubMed  Google Scholar 

  33. Mastrangelo T, Modena P, Tornielli S, Bullrich F, Testi MA, Mezzelani A et al (2000) A novel zinc finger gene is fused to EWS in small round cell tumor. Oncogene 19:3799–3804. doi:10.1038/sj.onc.1203762

    Article  CAS  PubMed  Google Scholar 

  34. McKean-Cowdin R, Razavi P, Barrington-Trimis J, Baldwin RT, Asgharzadeh S, Cockburn M et al (2013) Trends in childhood brain tumor incidence, 1973–2009. J Neurooncol 115:153–160. doi:10.1007/s11060-013-1212-5

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mobley BC, Roulston D, Shah GV, Bijwaard KE, McKeever PE (2006) Peripheral primitive neuroectodermal tumor/Ewing’s sarcoma of the craniospinal vault: case reports and review. Hum Pathol 37:845–853. doi:10.1016/j.humpath.2006.02.011

    Article  PubMed  Google Scholar 

  36. Nguyen N, Lee SB, Lee YS, Lee KH, Ahn JY (2009) Neuroprotection by NGF and BDNF against neurotoxin-exerted apoptotic death in neural stem cells are mediated through Trk receptors, activating PI3-kinase and MAPK pathways. Neurochem Res 34:942–951. doi:10.1007/s11064-008-9848-9

    Article  CAS  PubMed  Google Scholar 

  37. Ow JR, Ma H, Jean A, Goh Z, Lee YH, Chong YM et al (2014) Patz1 regulates embryonic stem cell identity. Stem Cells Dev 23:1062–1073. doi:10.1089/scd.2013.0430

    Article  CAS  PubMed  Google Scholar 

  38. Parker M, Mohankumar KM, Punchihewa C, Weinlich R, Dalton JD, Li Y et al (2014) C11orf95-RELA fusions drive oncogenic NF-kappaB signalling in ependymoma. Nature 506:451–455. doi:10.1038/nature13109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812. doi:10.1126/science.1164382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Paugh BS, Zhu X, Qu C, Endersby R, Diaz AK, Zhang J et al (2013) Novel oncogenic PDGFRA mutations in pediatric high-grade gliomas. Cancer Res 73:6219–6229. doi:10.1158/0008-5472.CAN-13-1491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Peifer M, Fernandez-Cuesta L, Sos ML, George J, Seidel D, Kasper LH et al (2012) Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat Genet 44:1104–1110. doi:10.1038/ng.2396

    Article  CAS  PubMed  Google Scholar 

  42. Persson M, Andren Y, Mark J, Horlings HM, Persson F, Stenman G (2009) Recurrent fusion of MYB and NFIB transcription factor genes in carcinomas of the breast and head and neck. Proc Natl Acad Sci USA 106:18740–18744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Prabowo AS, Iyer AM, Veersema TJ, Anink JJ, Schouten-van Meeteren AY, Spliet WG et al (2013) BRAF V600E mutation is associated with mTOR signaling activation in glioneuronal tumors. Brain Pathol. doi:10.1111/bpa.12081

    PubMed Central  Google Scholar 

  44. Preusser M, Hoischen A, Novak K, Czech T, Prayer D, Hainfellner JA et al (2007) Angiocentric glioma: report of clinico-pathologic and genetic findings in 8 cases. Am J Surg Pathol 31:1709–1718

    Article  PubMed  Google Scholar 

  45. Raabe E, Kieran MW, Cohen KJ (2013) New strategies in pediatric gliomas: molecular advances in pediatric low-grade gliomas as a model. Clin Cancer Res 19:4553–4558. doi:10.1158/1078-0432.CCR-13-0662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ramkissoon LA, Horowitz PM, Craig JM, Ramkissoon SH, Rich BE, Schumacher SE et al (2013) Genomic analysis of diffuse pediatric low-grade gliomas identifies recurrent oncogenic truncating rearrangements in the transcription factor MYBL1. Proc Natl Acad Sci USA 110:8188–8193. doi:10.1073/pnas.1300252110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ramsay RG, Gonda TJ (2008) MYB function in normal and cancer cells. Nat Rev Cancer 8:523–534

    Article  CAS  PubMed  Google Scholar 

  48. Rand V, Huang J, Stockwell T, Ferriera S, Buzko O, Levy S et al (2005) Sequence survey of receptor tyrosine kinases reveals mutations in glioblastomas. Proc Natl Acad Sci USA 102:14344–14349. doi:10.1073/pnas.0507200102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Reis-Filho JS, Simpson PT, Turner NC, Lambros MB, Jones C, Mackay A et al (2006) FGFR1 emerges as a potential therapeutic target for lobular breast carcinomas. Clin Cancer Res 12:6652–6662. doi:10.1158/1078-0432.CCR-06-1164

    Article  CAS  PubMed  Google Scholar 

  50. Ross JS, Wang K, Al-Rohil RN, Nazeer T, Sheehan CE, Otto GA et al (2014) Advanced urothelial carcinoma: next-generation sequencing reveals diverse genomic alterations and targets of therapy. Modern Pathol: Off J USA Can Acad Pathol 27:271–280. doi:10.1038/modpathol.2013.135

  51. Roth JJ, Santi M, Rorke-Adams LB, Harding BN, Busse TM, Tooke LS et al (2014) Diagnostic application of high resolution single nucleotide polymorphism array analysis for children with brain tumors. Cancer Genet 207:111–123. doi:10.1016/j.cancergen.2014.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sankar S, Lessnick SL (2011) Promiscuous partnerships in Ewing’s sarcoma. Cancer Genet 204:351–365. doi:10.1016/j.cancergen.2011.07.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schindler G, Capper D, Meyer J, Janzarik W, Omran H, Herold-Mende C et al (2011) Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 121:397–405. doi:10.1007/s00401-011-0802-6

    Article  CAS  PubMed  Google Scholar 

  54. Schwartzentruber J, Korshunov A, Liu XY, Jones DT, Pfaff E, Jacob K et al (2012) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482:226–231. doi:10.1038/nature10833

    Article  CAS  PubMed  Google Scholar 

  55. Sorensen V, Zhen Y, Zakrzewska M, Haugsten EM, Walchli S, Nilsen T et al (2008) Phosphorylation of fibroblast growth factor (FGF) receptor 1 at Ser777 by p38 mitogen-activated protein kinase regulates translocation of exogenous FGF1 to the cytosol and nucleus. Mol Cell Biol 28:4129–4141. doi:10.1128/MCB.02117-07

    Article  PubMed  PubMed Central  Google Scholar 

  56. Stenman G, Andersson MK, Andren Y (2010) New tricks from an old oncogene: gene fusion and copy number alterations of MYB in human cancer. Cell Cycle 9:2986–2995 12515 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Stokland T, Liu JF, Ironside JW, Ellison DW, Taylor R, Robinson KJ et al (2010) A multivariate analysis of factors determining tumor progression in childhood low-grade glioma: a population-based cohort study (CCLG CNS9702). Neuro-oncology 12:1257–1268. doi:10.1093/neuonc/noq092

    PubMed  PubMed Central  Google Scholar 

  58. Tatevossian RG, Tang B, Dalton J, Forshew T, Lawson AR, Ma J et al (2010) MYB upregulation and genetic aberrations in a subset of pediatric low-grade gliomas. Acta Neuropathol 120:731–743. doi:10.1007/s00401-010-0763-1

    Article  PubMed  PubMed Central  Google Scholar 

  59. Thom M, Blumcke I, Aronica E (2012) Long-term epilepsy-associated tumors. Brain Pathol 22:350–379. doi:10.1111/j.1750-3639.2012.00582.x

    Article  PubMed  Google Scholar 

  60. Thon N, Eigenbrod S, Kreth S, Lutz J, Tonn JC, Kretzschmar H et al (2012) IDH1 mutations in grade II astrocytomas are associated with unfavorable progression-free survival and prolonged postrecurrence survival. Cancer 118:452–460. doi:10.1002/cncr.26298

    Article  CAS  PubMed  Google Scholar 

  61. Wang M, Tihan T, Rojiani AM, Bodhireddy SR, Prayson RA, Iacuone JJ et al (2005) Monomorphous angiocentric glioma: a distinctive epileptogenic neoplasm with features of infiltrating astrocytoma and ependymoma. J Neuropathol Exp Neurol 64:875–881

    Article  PubMed  Google Scholar 

  62. Wu G, Broniscer A, McEachron TA, Lu C, Paugh BS, Becksfort J et al (2012) Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 44:251–253. doi:10.1038/ng.1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wu G, Diaz AK, Paugh BS, Rankin SL, Ju B, Li Y et al (2014) The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat Genet 46:444–450. doi:10.1038/ng.2938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:765–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhang J, Benavente CA, McEvoy J, Flores-Otero J, Ding L, Chen X et al (2012) A novel retinoblastoma therapy from genomic and epigenetic analyses. Nature 481:329–334. doi:10.1038/nature10733

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhang J, Ding L, Holmfeldt L, Wu G, Heatley SL, Payne-Turner D et al (2012) The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 481:157–163. doi:10.1038/nature10725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang J, Wu G, Miller CP, Tatevossian RG, Dalton JD, Tang B et al (2013) Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nat Genet 45:602–612. doi:10.1038/ng.2611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful for support from Anatomic Pathology and the Hartwell Center of Biotechnology and Bioinformatics at St. Jude Children’s Research Hospital. We acknowledge the St. Jude Children’s Research Hospital Biorepository, from which tissue samples were obtained in accordance with institutional review board approval for the Pediatric Cancer Genome Project. This work was supported by the St. Jude Children’s Research Hospital–Washington University Pediatric Cancer Genome Project and the American Lebanese Syrian Associated Charities (ALSAC) of St. Jude Children’s Research Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Ellison.

Additional information

On behalf of the Pediatric Cancer Genome Project.

I. Qaddoumi, W. Orisme and J. Wen contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 22684 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qaddoumi, I., Orisme, W., Wen, J. et al. Genetic alterations in uncommon low-grade neuroepithelial tumors: BRAF, FGFR1, and MYB mutations occur at high frequency and align with morphology. Acta Neuropathol 131, 833–845 (2016). https://doi.org/10.1007/s00401-016-1539-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-016-1539-z

Keywords

Navigation