Skip to main content
Log in

Role of hypertriglyceridemia in the pathogenesis of experimental acute pancreatitis in rats

  • Published:
International Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

Summary

Conclusion

The pancreatic damage initiated via different pathogenetic pathways can be increased by triglycerides. Thus, triglycerides seem to play an important role in the pathogenesis of acute pancreatitis.

Background

Lipolytic enzymes and their substrates may play a role in the pathogenesis of acute necrotizing pancreatitis. We investigated, therefore, whether triglycerides alter the course of acute pancreatitis in three experimental models of rats.

Methods

  1. 1.

    Edematous acute pancreatitis induced by repeated sc injections of cerulein;

  2. 2.

    Necrotizing acute pancreatitis by retrograde duct injection of sodium taurocholate; and

  3. 3.

    Pancreatic edema by ligation of:

  4. a.

    The bile duct at the liver hilus;

  5. b.

    The common bile/pancreatic duct close to the duodenal wall; or

  6. c.

    A combination of a. and b.

Six hours later, rats were sacrificed and the isolated perfused pancreas prepared. The pancreases were perfused with either HEPES/Ringer/HAES alone or in combination with various concentrations of triglycerides (1–5% wt/vol). The activities of lipase and amylase in the portal venous effluents were regarded as a marker of pancreatic injury. In addition, the pancreases were evaluated by light microscopy.

Results

In both cerulein and taurocholate acute pancreatitis, amylase/lipase activities were significantly higher compared to controls during 45 min of perfusion. In both models, addition of triglycerides caused a dose-dependent marked elevation of enzymes. Ligation (a) did not cause any rise in enzymes in the venous efffluent; triglycerides had no effect. Ligation (b) or (c) caused a significant increase of pancreatic enzymes, which was further increased by triglycerides. Histology showed various degrees of severity of tissue damage depending on the model used. The additional damaging effect of a 45-min perfusion with triglycerides, however, could not be detected by histology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

HR:

HEPES (N-2-hydroxyethyl-piperazine-N′-2-ethanesulfonic acid)-buffered Ringer solution

HAES:

hydroxyethyl starch

References

  1. Opie EL. The etiology of acute hemorragic pancreatitis.Bull Johns Hopkins Hosp 1901; 12: 182–192.

    Google Scholar 

  2. Acosta JM, Ledesma CL. Gallstone migration as a cause of acute pancreatitis.N Engl J Med 1974; 290: 484–487.

    Article  PubMed  CAS  Google Scholar 

  3. Harvey MH, Cates MC, Reber HA. Possible mechanisms of acute pancreatitis induced by ethanol.Am J Surg 1988; 155: 49–56.

    Article  PubMed  CAS  Google Scholar 

  4. Malagelada J-R. The pathophysiology of alcoholic pancreatitis.Pancreas 1986; 1: 270–278.

    Article  PubMed  CAS  Google Scholar 

  5. Geokas MC, Baltaxe HA, Banks PA, Silva J, Jr, Frey CF. Acute pancreatitis. Davis conference.Ann Int Med 1985; 103: 86–100.

    PubMed  CAS  Google Scholar 

  6. Adler G. Kern HF, Scheele GA. Experimental models and concepts in acute pancreatitis, in:The Exocrine Pancreas: Biology, Pathobiology, and Diseases. Go VLW, Gardner JD, Brooks FP, Lebenthal E, DiMagno EP, Scheele GA, eds. Raven, New York, 1986; pp. 407–421.

    Google Scholar 

  7. Niederau C, Liddle RA, Ferrell LD, Grendell JH. Beneficial effects of cholecystokinin-receptor blockade and inhibition of proteolytic enzyme activity in experimental acute hemorrhagic pancreatitis in mice. Evidence for cholecystokinin as a major factor in the development of acute pancreatitis.J Clin Invest 1986; 78: 1056–1063.

    Article  PubMed  CAS  Google Scholar 

  8. Guice KS, Miller DE, Oldham KT, Townsend CM Jr, Thompson JC. Superoxide dismutase and catalase: a possible role in established pancreatitis.Am J Surg 1986; 151: 163–169.

    Article  PubMed  CAS  Google Scholar 

  9. Rutledge PL, Saluja AK, Powers RE, Steer ML. Role of oxygen-derived free radicals in diet-induced hemorrhagic pancreatitis in mice.Gastroenterology 1987; 93: 41–47.

    PubMed  CAS  Google Scholar 

  10. Closa D, Hotter G. Bulbena O. Gelpí E, Roselló-Catafau J. Calcium channel blockers in experimental acute pancreatitis: effect of tissue prostanoids and oxygen free radicals.Pancreas 1996; 12: 178–182.

    Article  PubMed  CAS  Google Scholar 

  11. Ito T, Nakao A, Kishimoto W, Nakano M, Takagi H. The involvement and sources of active oxygen in experimentally induced acute pancreatitis.Pancreas 1996; 12: 173–177.

    Article  PubMed  CAS  Google Scholar 

  12. Peralta J, Reides C, Garcia S, Llesuy S, Pargament G, Carreras MC, Catz S, Poderoso JJ. Oxidative stress in rodent closed duodenal loop pancreatitis.Int J Pancreatol 1996; 19: 61–69.

    PubMed  CAS  Google Scholar 

  13. Wedgwood KR, Farmer RC, Reber HA. A model of hemorrhagic pancreatitis in cats. Role of 16, 16-Dimethylprostaglandin E2.Gastroenterology 1986; 90: 32–39.

    PubMed  CAS  Google Scholar 

  14. Chiari H. Über Selbstverdauung des menschlichen Pankreas.Z Heilk 1896; 17: 69–96.

    Google Scholar 

  15. Rinderknecht H. Activation of pancreatic zymogens. Normal activation, premature intrapancreatic activation, protective mechanisms against inappropriate activation.Dig Dis Sci 1986; 31: 314–321.

    Article  PubMed  CAS  Google Scholar 

  16. Odaira C, Berger Z, Iovanna JL, Sarles H. Localized necrohemorrhagic pancreatitis in the rat after pancreatic interstitial trypsin injection. Regressive pseudochronic lesions.Digestion 1986; 34: 68–77.

    Article  PubMed  CAS  Google Scholar 

  17. Yamaguchi H, Kimura T, Mimura K, Nawata H. Activation of proteases in caerulein-induced pancreatitis.Pancreas 1989; 4: 565–571.

    PubMed  CAS  Google Scholar 

  18. Leach SD, Modlin IM, Scheele GA, Gorelick FS. Intracellular activation of digestive zymogens in rat pancreatic acini. Stimulation by high doses of cholecystokinin.J Clin Invest 1991; 87: 356–366.

    Article  Google Scholar 

  19. Bialek R, Willemer S, Arnold R, Adler G. Evidence of intracellular activation of serine proteases in acute caerulein-induced pancreatitis in rats.Scand J Gastroenterol 1991; 26: 190–196.

    Article  PubMed  CAS  Google Scholar 

  20. Nakae Y, Naruse S, Kitagawa M, Hirao S, Yamamoto R, Hayakawa T. Activation of trypsinogen in experimental models of acute pancreatitis.pancreas 1995; 10: 306–313.

    Article  PubMed  CAS  Google Scholar 

  21. Steer ML, Meldolesi J, Figarella C. Pancreatitis: The role of lysosomes.Dig Dis Sci 1984; 29: 934–938.

    Article  PubMed  CAS  Google Scholar 

  22. Koike H, Steer ML, Meldolesi J. Pancreatic effects of ethionine. Blockade of exocytosis and appearance of crinophagy precede cellular necrosis.Am J Physiol 1982; 242: G297-G307.

    PubMed  CAS  Google Scholar 

  23. Niederau C, Grendell JH. Intracellular vacuoles in experimental acute pancreatitis in rats and mice are an acidified compartment.J Clin Invest 1988; 81: 229–236.

    Article  PubMed  CAS  Google Scholar 

  24. Greenbaum LM, Hischkowitz A, Shoichet I. The activation of trypsinogen by cathepsin B.J Biol Chem 1959; 234: 2885–2890.

    PubMed  CAS  Google Scholar 

  25. Figarella C, Misczuk-Jamska B, Barrett AJ. Possible lysosomal activation of pancreatic zymogens.Biol Chem Hoppe Seyler 1988; 369 (Suppl): 293–298.

    PubMed  CAS  Google Scholar 

  26. Lerch MM, Saluja AK, Dawra R, Saluja M, Steer ML. The effect of chloroquine administration on two experimental models of acute pancreatitis.Gastroenterology 1993; 104: 1768–1779.

    PubMed  CAS  Google Scholar 

  27. Blackstone MO. Acinar-cell or interstitial space: where is pancreatitis initiated?N Engl J Med 1987; 317: 319, 320.

    Article  PubMed  CAS  Google Scholar 

  28. Schmidt H, Creutzfeldt W. The possible role of phospholipase A in the pathogenesis of acute pancreatitis.Scand J Gastroenterol 1969; 4: 39–48.

    Article  PubMed  CAS  Google Scholar 

  29. Nevalainen TJ. The role of phospholipase A2 in acute pancreatitis.Scand J Gastroenterol 1980; 15: 641–650.

    PubMed  CAS  Google Scholar 

  30. Kloppel G, Dreyer T, Willemer S, Kem HF, Adler G. Human acute pancreatitis: its pathogenesis in the light of immunocytochemical and ultrastructural findings in acinar cells.Virchows Arch Pathol Anat 1986; 409: 791–803.

    Article  CAS  Google Scholar 

  31. Nagai H, Henrich H, Wünsch PH, Fischbach W, Mössner J. Role of pancreatic enzymes and their substrates in autodigestion of the pancreas—In vitro studies with isolated rat pancreatic acini.Gastroenterology 1989; 96: 838–847.

    PubMed  CAS  Google Scholar 

  32. Kimura W, Secknus R, Fischbach WC, Mössner J. Role of phospholipase A2 in pancreatic acinar cell damage and possibilities of inhibition. Studies with isolated rat pancreatic acini.Pancreas 1992; 8: 70–79.

    Article  Google Scholar 

  33. Kimura W, Meyer F, Hess D, Kirchner Th, Fischbach W, Mössner J. Comparison of different treatment modalities in experimental pancreatitis: Inhibition of proteases, inhibition of lipase, albumin.Gastroenterology 1992; 103: 1916–1924.

    PubMed  CAS  Google Scholar 

  34. Mössner J, Bödeker H, Kimura W, Secknus R, Pusch B, Meyer F, Fischbach W. Potential role of lipase in the pathogenesis of acinar cell destruction.Int J Pancreatol 1992; 12: 285–296.

    PubMed  Google Scholar 

  35. Rünzi M, Saluja A, Lerch MM, Dawra R, Nishino H, Steer ML. Early ductal decompression prevents the progression of biliary pancreatitis: an experimental study in the opossum.Gastroenterology 1993; 105: 157–164.

    PubMed  Google Scholar 

  36. Neoptolemos JP, Carr-Locke DL, London N, Bailey I, James D, Fossard DP. Results of a prospective randomized trial of ERCP and endoscopic sphincterotomy (ES) in acute pancreatitis due to gallstones.Gut 1988; 29: 266–272.

    Google Scholar 

  37. Fan S-T, Lai ECS, Mok FPT, Lo C-M, Zheng S-S, Wong J. Early treatment of acute biliary pancreatitis by endoscopic papillotomy.N Engl J Med 1993: 328: 228–232.

    Article  PubMed  CAS  Google Scholar 

  38. Dumont AK, Martelli AB. Pathogenesis of pancreatic edema following exocrine duct obstruction.Ann Surg 1968; 168: 302–307.

    Article  PubMed  CAS  Google Scholar 

  39. Farmer RC, Tweedie J, Maslin S, Reber HA, Adler G, Kern H. Effects of bile salts on permeability and morphology of main pancreatic duct in cats.Dig Dis Sci 1984; 29: 740–751.

    Article  PubMed  CAS  Google Scholar 

  40. Lankisch PG, Ihse I. Bile-induced acute experimental pancreatitis.Scand J Gastroenterol 1987; 22: 257–260.

    Article  PubMed  CAS  Google Scholar 

  41. Müller MK, Kessel B, Hütt T, Kath R, Layer P, Goebell H. Effects of somatostatin-14 on gastric and pancreatic responses to hormonal and neural stimulation using an isolated perfused rat stomach and pancreas preparation.Pancreas 1988; 3: 303–310.

    Article  PubMed  Google Scholar 

  42. Creutzleldt W, Schmidt H. Aetiology and pathogenesis of pancreatitis.Scand J Gastroenterol 1970; 5 (Suppl 6): 47–62.

    Google Scholar 

  43. Saharia P, Margolis S, Zuidema GD, Cameron JL. Acute pancreatitis with hyperlipidemia: Studies with an isolated perfused canine pancreas.Surgery 1977; 82: 60–67.

    PubMed  CAS  Google Scholar 

  44. Lee PC, Nakashima Y, Appert HE, Howard JM. Lipase and colipase in canine pancreatic juice as etiologic factors in fat necrosis.Surg Gynecol Obstet 1979; 148: 39–44.

    PubMed  CAS  Google Scholar 

  45. Terry TR, Hermon-Taylor J, Grant DAW. The generation of lysolecithin by enterokinase in trypsinogen prophospholipase A2 lecithin mixtures, and its relevance to the pathogenesis of acute necrotising pancreatitis.Clin Chim Acta 1985; 150: 151–163.

    Article  PubMed  CAS  Google Scholar 

  46. Klöppel G, Dreyer T, Willemer S, Kern HF, Adler G. Human acute pancreatitis: its pathogenesis in the light of immunocytochemical and ultrastructural findings in acinar cells.Virchows Arch Pathol Anat 1986; 409: 791–803.

    Article  Google Scholar 

  47. Arnesjö B. The formation of lysolecithin in rat pancreas after experimentally induced bile salt pancreatitis.Acta Chir Scand 1971; 137: 351–354.

    PubMed  Google Scholar 

  48. Meyer F, Kimura W, Marczok V, Pusch B, Fischbach W, Mössner J. Stimulus secretion coupling and regeneration in various animal models of acute pancreatitis.Eur J Gastroenterol Hepatol 1993; 5: 275–282.

    Article  Google Scholar 

  49. Lerch MM, Saluja AK, Dawra R, Saluja M, Steer ML. The effect of chloroquine administration on two experimental models of acute pancreatitis.Gastroenterology 1993; 104: 1768–1779.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kimura, W., Mössner, J. Role of hypertriglyceridemia in the pathogenesis of experimental acute pancreatitis in rats. Int J Gastrointest Canc 20, 177–184 (1996). https://doi.org/10.1007/BF02803766

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02803766

Key Words

Navigation