Gamna-Gandy nodules of the spleen and asplenism in SLE: a novel association?

Annefleur J Petri,1 Maarten Limper,2 Anya Milne,3 Lenneke E M Haas4

DESCRIPTION

We present a case of a 53-year-old woman who presented to the emergency room with acute abdominal pain, fever and haemodynamic and respiratory instability and was admitted to the intensive care unit with fulminant septic shock with multiorgan failure. CT imaging of the abdomen showed no gross abnormalities, initial laboratory results are presented in table 1.

Despite adequate resuscitation, broad-spectrum antibiotics and supportive care, following the International Guidelines of the Surviving Sepsis Campaign, she died within a couple of hours. The patient had a history of systemic lupus erythematosus (SLE) with arthralgia, positive antinuclear antibodies and persistently high anti-DNA antibodies, but without active disease and no immunosuppressive medication since years.

Leucocyte typing of the initial peripheral blood smear showed Howell-Jolly bodies and diplococci, indicating massive bacterial load and functional asplenism. Functional asplenism or hyposplenism is present in up to 5% of patients with SLE with or without disease activity before.1 No thrombocytosis or antiphospholipid antibodies—that are suggested as clues to autosplenectomy—were found in our patient.2

Postmortem blood cultures became positive for Streptococcus pneumonia. Pathology revealed perivascular infiltrates in the liver and Gamna-Gandy bodies (GGB) in a remarkably small spleen (figure 1).

The patient did not take medication or drugs that could explain this image of the liver. GGB or haemosiderotic nodules are foci of haemosiderin deposition resulting from intrasplenic haemorrhage (figure 2 and figure 3). Portal hypertension is considered the primary cause of GGBs and their appearance is associated with sickle-cell anaemia, hereditary haemochromatosis, haemolytic anaemia, acquired haemosiderosis, paroxysmal nocturnal haemoglobinuria, portal or splenic vein thrombosis, leukaemia, lymphoma and repeated blood transfusion.3 However, these conditions known to be associated with GGB were absent in our patient.

Although the pathophysiological processes leading to hyposplenism in SLE remain largely unknown, it has been proposed that this is a result of silent infarction due to hyposplenism.4 As a consequence of inflammatory microvessel damage, splenic haemosiderin deposits may occur and remain visible, also after the resolution of vasculitis. Furthermore, despite the absence of antiphospholipid antibodies in this patient, splenic...
In conclusion, this case once again illustrates the association of SLE with asplenism and the fulminant course of pneumococcal sepsis in those patients, despite disease inactivity for years. Moreover, GGB were found, which could not be related to known associated diseases. As far as we know, this is the first case describing GGB in a patient with SLE and functional asplenism.

Learning points

- Functional asplenia or hyposplenism is present in a small but significant part of patients with systemic lupus erythematosus (SLE), regardless of disease activity and use of immunosuppressive medication. Diagnostic clues indicating a susceptibility to splenic hypofunction or dysfunction remain uncertain, making it impossible to predict which patients will develop asplenism.
- Taking into account the fulminant course of pneumococcal infection in patients with SLE and asplenism, prophylactic vaccination should be considered in every patient with SLE.
- This is the first case that describes GGB in a patient with SLE and functional asplenism.

Contributors

LEMH and AJP: contributed equally to the writing of this manuscript and were personally involved with the case. AM: provided the pathology images and wrote the figure captions. ML: shared his expertise on the subject in trying to explain the findings in this particular setting. AM and ML: reviewed the draft text.

Patient consent

Obtained.

Provenance and peer review

Not commissioned; externally peer reviewed.

REFERENCES

Table 1 Laboratory test results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Reference value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRP</td>
<td>96</td>
<td><10</td>
<td>mg/L</td>
</tr>
<tr>
<td>ESR</td>
<td>7</td>
<td><20</td>
<td>mm/hour</td>
</tr>
<tr>
<td>Hb</td>
<td>8.0</td>
<td>7.0–9.2</td>
<td>mmol/L</td>
</tr>
<tr>
<td>Ht</td>
<td>0.40</td>
<td>0.32–0.44</td>
<td>L/L</td>
</tr>
<tr>
<td>MCV</td>
<td>95</td>
<td>82–89</td>
<td>L/L</td>
</tr>
<tr>
<td>WBC</td>
<td>6.5</td>
<td>3.0–10.0</td>
<td>10^9/L</td>
</tr>
<tr>
<td>Platelet count</td>
<td>37</td>
<td>150–350</td>
<td>10^9/L</td>
</tr>
</tbody>
</table>

Laboratory test results

- **pO2**: 8.2 22.0–29.0 mmol/L
- **PAO2**: 118 <98 U/L
- **pCO2**: 7.24 7.35–7.45 kPa
- **BE**: −17.1 –3.0–3.0 mmol/L
- **sO2**: 98 95–98 %
- **Hb**: 8.0 7.0–9.2 mmol/L
- **Ht**: 0.40 0.32–0.44 L/L
- **MCV**: 95 82–89 fL
- **WBC**: 6.5 3.0–10.0 10^9/L
- **Platelet count**: 37 150–350 10^9/L

Arterial blood gas

© BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.