Uterine perforation during intracavitary brachytherapy for carcinoma of the cervix

Girish Sadam Prabhakar, Swaroop Revannasiddaiah, Sridhar Papaiah Susheela, Surega Anbumani

Department of Radiation Oncology, HealthCare Global—Bangalore Institute of Oncology, Bengaluru, Karnataka, India

Correspondence to
Dr Swaroop Revannasiddaiah, swarooptheone@gmail.com

DESCRIPTION
Following a seemingly straightforward procedure to place the necessary applicators (comprising the central tandem into the uterine cavity, and the right and the left ovoids into the lateral vaginal fornices), this patient of cervical-carcinoma, who was scheduled to receive intracavitary brachytherapy (ICBT) was taken up for CT scanning intended for dose-optimised three-dimensional conformal brachytherapy.

Surprisingly, it was noted that the central tandem had pierced through the posterior wall of the uterus to enter the abdominal cavity (figures 1–3). The uterine body was visualised as anteflexed, even though a preprocedure clinical examination was not suggestive of the same. The applicators were removed, and the procedure was postponed.

Successful radiotherapy for cervical carcinoma typically requires the integration of brachytherapy with external-beam radiotherapy. Brachytherapy allows adequate dosing of the uterus, upper-vagina, cervix and a small area of adjoining parametrium, while at the same time sparing the urinary bladder and rectum from excessive doses. ICBT is a time-tested treatment for cervical carcinoma, wherein the accessible utero-cervical cavity is irradiated from-within by the placement of applicators to facilitate radioactive-source loading.

With regard to applicator placement, even though ultrasound-guidance is known to reduce the risk of uterine perforations, it remains unadopted by a majority of clinicians. This report illustrates the potential benefit that could have been had with ultrasound-guidance.1

In the current era, the applicators are loaded with a computer-controlled iridium-192 source which delivers the radiation. After the placement of the tandem and ovoids, the dose-optimisation is usually done either with a traditional ‘x-ray simulation’ or with a ‘CT-simulation’. Though the x-ray simulation is simple and less-expensive, CT-simulation is...
clinically advantageous as it provides an opportunity for volumetric dose-optimisation. The current case demonstrates another advantage, that is, the possible detection of unexpected uterine perforations.23

Learning points

▸ Given that the tissues could be friable and prone to perforations owing to the cancer itself and the usual use of prior external beam radiotherapy, the potential risk of uterine perforation should not be underestimated.
▸ The use of ultrasound-guidance during applicator placement may reduce the risk of uterine perforations.1
▸ The use of traditional x-ray simulations may make the planner oblivious to the true position of the central tandem, which if loaded in the intra-abdominal location could expose the small intestine to risk of serious radiation dosages.3
▸ The use of CT scan after application not only allows for volumetric dose-optimisation, but also allows the detection of applicator mal-placements, as illustrated by this report.

Competing interests None.
Patient consent Obtained.
Provenance and peer review Not commissioned; externally peer reviewed.

REFERENCES