Flagellate dermatitis in bleomycin chemotherapy: a causality?

Niken Indrastuti,1,2 Sri Mariyani,1,2 Prima Meidiyanti1,2

SUMMARY
Flagellate dermatitis is a relatively rare reaction to toxicity. It appears as skin lesions with erythematous patches or papules of linear, multiple, flagellate structures. Flagellate dermatitis can be triggered by several causes, which are most commonly associated with bleomycin. This paper reports two cases of flagellate dermatitis, one in a patient with germ cell carcinoma and another in a patient with osteosarcoma who were both diagnosed with flagellate dermatitis after the administration of bleomycin.

BACKGROUND
Bleomycin is a cytotoxic agent which contains glycopeptides. It is isolated from the Streptomyces verticillus strain and was first developed in Japan by Umezawa in 1966. It has been used to treat various cancers such as squamous cell carcinoma, lymphoma, germ cell tumour, testicular carcinoma and malignant pleural effusions. It is also used by dermatologists to treat recalcitrant warts, hypertrophic scars and keloids. The use of bleomycin is currently limited due to several side effects that have been reported such as pulmonary fibrosis, Raynaud’s phenomenon, alopecia, onychodystrophy, gangrene, oedema and flagellate dermatitis.1 2

Flagellate dermatitis is a rare toxic reaction to bleomycin with 8%–66% incidence rate.1 3–5 The term ‘flagellate’ is derived from the Latin word ‘flagellum’, which means a whip-like appearance.1 While flagellate dermatitis is most commonly linked to bleomycin, it can also be caused by the chemotherapy agents peplomycin and docetaxel as well as shiitake mushroom toxin, and is sometimes found on patients with dermatomyositis.6 7 This paper describes two cases of flagellate dermatitis, one in a patient with germ cell carcinoma and another in a patient with osteosarcoma who were both diagnosed with flagellate dermatitis after the administration of bleomycin. The aim of this paper is to provide an overview of how this unique toxic reaction to bleomycin manifests on the skin so that clinicians can take it into consideration when administering this chemotherapy drug. In addition to that, this paper also intends to explore other causes of flagellate dermatitis besides bleomycin.

CASE PRESENTATION
Case 1
A man in his 20s was referred to the dermatology department with rashes and itchy patches on the body. Lesions first appeared the previous day as itchy hives in the form of irregular lines on the stomach and red spots which spread to the back and legs. The patient did not experience any muscle weakness. He had no history of similar conditions, allergies, atopy or hives. The patient had not been using topical medication, consuming mushrooms or inflicting self-injury using sharp objects. Family history also had no record of similar reports.

A month prior, the patient was diagnosed with mixed germ cell intra-abdominal malignant tumour along with cerebral metastases. He had received the first cycle of BEC chemotherapy regimen which consisted of bleomycin (30 U/m² intravenously on days 1, 8 and 15), etoposide (150 mg/m² on days 1–5) and cisplatin (30 mg/m² on days 1–5). The skin lesions appeared after the administration of bleomycin on day 15. Vital signs were within normal limits and there was no evidence of muscle weakness. The dermatological status on the abdomen, back and waist showed erythematous patches that were linear in shape with a flagellate arrangement (figure 1).

Case 2
A woman in her teens was referred to the dermatology department with whiplash-like pattern marks and scratch mark-like hyperpigmentation on the body. The lesions appeared the week before as itchy hives in the form of irregular lines on the abdomen and waist. Two days later, the patient’s parents noted dark brown-coloured hypopigmentation resembling scratch mark on some areas and marks of whiplashes on others. The patient did not experience any muscle weakness. Similar to the first patient, the second patient also never suffered from similar conditions. She did not have allergies, atopy or hives. There were no history of topical medication use, mushroom consumption, mental disorders and self-inflicted injury using sharp weapons. Family history also did not have any record about similar reports.

The second patient was diagnosed with osteosarcoma 10 months prior. She received osteosarcoma chemotherapy protocol, which included high-dose methotrexate (HDMTX) (8 g/m² intravenously in weeks 3, 4, 8, 9, 13, 14, 18, 19, 23 and 24), bleomycin (30 mg/m²), cyclophosphamide (500 mg/m²) and actinomycin D (0.75 mg/m² in week 15). Doxorubicin (90 mg/m²) and cisplatin (75 mg/m²) were administered in weeks 5 and 10. After the administration of HDMTX, cyclophosphamide, doxorubicin and cisplatin, the patient did not experience any lesions on the skin. The patient mentioned the lesions appeared after the...
oleum cocos was applied topically two times per day. In the second patient, cetirizine and desoximetasone ointment in
olone daily for 3
istration of other chemotherapy agents.
patients did not experience any skin complaints after the admin-
sions, resulting in abrasions and microtrauma, which can lead to
ase enzyme in the skin, which inactivates bleomycin. This results
manifestations is assumed to be due to lack of bleomycin hydro-
lase, melanophages in the papillary dermis and increased
melanin pigmentation in the stratum basale are present.

administration of bleomycin in week 15. Vital signs were within
normal limits and there was no evidence of muscle weakness. The
dermatological status on the abdomen and waist showed
erythematous-hyperpigmented patches that were linear in shape
with a flagellate arrangement (figure 2).

Investigations
Dermatoglyphism was not found on both patients. Laboratory
tests showed normal level of creatine kinase and creatine kinase
myocardial band. The diagnosis was based on the connection
between bleomycin and skin lesions. A skin biopsy was not
performed.

Differential diagnosis
The differential diagnosis of flagellate erythema includes bleo-
mycin flagellate dermatitis, shiitake mushroom intake, derma-
tomyositis, adult-onset Still’s disease and dermatitis artefacta.
Skin manifestations which appear following bleomycin adminis-
tration and hyperpigmentation which occurs after drug suspen-
sion are associated with bleomycin-induced skin disorders. The
patients did not experience any skin complaints after the admin-
istration of other chemotherapy agents.

Treatment
The first patient was given one dose of 16 mg of methylprednis-
olone daily for 3 days and 10 mg of cetirizine also once per day.
In the second patient, cetirizine and desoximetasone ointment in
oleum cocos was applied topically two times per day.

Outcome and follow-up
After a week of treatment, the lesion turned into linear hyper-
pigmentation with flagellate arrangement and the patients no
longer complained about itching. The first patient died while
undergoing treatment so the therapy was discontinued. The
second patient was still given bleomycin considering there was
only one administration left.

Discussion
The diagnosis in these two cases was based on clinical diagnosis
which discovered a temporal relationship between the use of
bleomycin and the appearance of skin lesions. Skin lesions in the
first case appeared on the body after the third bleomycin adminis-
tration, while in the second case it appeared after the first bleo-
mycin administration. In the first case, some of the lesions on
the body initially took the form of urticaria which turned into
erythematous patches and then became hyperpigmented patches.
In the second case, the lesion first appeared as an erythematous
patch which then became a hyperpigmented patch. Dermato-
logical examination on the body showed erythematous patches
and hyperpigmented patches, linear in shape, multiple, with
flagellate arrangement. Various other case reports have also
mentioned the occurrence of flagellate dermatitis after the
administration of bleomycin (table 1).

Bleomycin-induced flagellate dermatitis is a rare toxic
response to bleomycin. The condition typically appears as
skin lesions which begin as urticarial lesions that progress into
erythematous patches or papules in the form of linear, multiple,
flagellate arrays and, in most cases, are accompanied by pruritus,
albeit it may also be non-pruritic. Lesions usually appear on the trunk. The residual lesion is hyperpigmented. Flagellate
dermatitis may appear 24 hours to 6 months after the initial
exposure to bleomycin and occur within 12 hours after subse-
quent drug re-exposure.

The postulated pathophysiological mechanism for cutaneous
manifestations is assumed to be due to lack of bleomycin hydro-
lase enzyme in the skin, which inactivates bleomycin. This results
in an accumulation of bleomycin in the skin. Furthermore, the
pruritus that is caused by these alterations may trigger excoria-
tions, resulting in abrasions and microtrauma, which can lead to
vasodilation and increased bleomycin deposition. Bleomycin
damages endothelial cells by upregulating TGF- β (tumour
necrosis factor beta), triggering keratinocyte death, and causing
a cytotoxic effect on melanocytes, among other mechanisms for
cutaneous inflammation and pigmentation.

Bleomycin-induced flagellate dermatitis is a dose-dependent
reaction that usually occurs with cumulative doses above 200
IU. However, there are several case reports indicting otherwise.
These reports state that the occurrence of these lesions is an idio-
syncratic reaction that is independent regardless of the dose and
can manifest after the administration of various doses of bleo-
mycin ranging from 5 IU to 465 IU.

Bleomycin-induced flagellate dermatitis has no absolute or
characteristic histopathological appearance. In the acute phase,
there is inconspicuous spongiosis, vacuolisation of the stratum
basale of the epidermis, a superficial lymphocytic infiltrate with
neutrophils and eosinophilic granulocytes, dermal oedema and
scattered dyskeratic keratinocytes. In later stages, only a few
post-inflammatory changes were found such as pigment incon-
tinence, melanophages in the papillary dermis and increased
melanin pigmentation in the stratum basale are present.

In majority of the cases, these lesions resolve sponta-
neously after the discontinuation of bleomycin and leave
hyperpigmentation marks. In other cases, flagellate hyperpigmentation may persist even after a year of therapy. Managing symptoms is the main treatment to limit trauma to the skin. This can be done by administering antihistamines and topical corticosteroids or oral corticosteroids. Short-term oral corticosteroids are the main treatment to limit trauma to the skin. This can be done by administering antihistamines and topical corticosteroids or oral corticosteroids. Short-term oral corticosteroids have been used in patients with extensive lesions. Discontinuation of bleomycin can be an option in the case of severe lesions. On the other hand, re-exposure to bleomycin can cause recurrence and spread of lesions.

In conclusion, this paper describes bleomycin-induced flagellate dermatitis found on two patients undergoing bleomycin chemotherapy. Flagellate dermatitis itself is a rare form of side effect of this drug. The aetiology and diagnosis of these two patients were based on (1) anamnesis, namely in the form of a temporal connection between the use of bleomycin and the appearance of skin lesions and (2) physical examination on the flagellate-shaped lesions.

Learning points

- Flagellate dermatitis is a rare form of side effect from bleomycin.
- Clinicians should be more vigilant about the use of the chemotherapy drug bleomycin.
- There are other causes of flagellate dermatitis apart from bleomycin.

REFERENCES

Table 1 Reported cases of bleomycin flagellate dermatitis

<table>
<thead>
<tr>
<th>Reference</th>
<th>Age (year)</th>
<th>Sex</th>
<th>Location</th>
<th>Symptom(s)</th>
<th>Malignancy and therapy</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td>27</td>
<td>M</td>
<td>Abdomen and back</td>
<td>Pruritic and erythematous linear</td>
<td>Mixed germ cell intra-abdominal malignant tumour</td>
<td>Bleomycin, etoposide and cisplatin</td>
</tr>
<tr>
<td>Case 2</td>
<td>17</td>
<td>F</td>
<td>Abdomen, wrist and back</td>
<td>Pruritic, erythematous and hyperpigmentation linear</td>
<td>Osteosarcoma</td>
<td>HDMTX, bleomycin, cyclophosphamide, doxorubicin and cisplatin</td>
</tr>
<tr>
<td>Grynszpan et al</td>
<td>40</td>
<td>F</td>
<td>Lower limb and back</td>
<td>Pruritic, erythematous lesion and hyperpigmentation</td>
<td>Hodgkin’s lymphoma</td>
<td>Adriamycin, vinblastine, dacarbazine and bleomycin</td>
</tr>
<tr>
<td>Boussios et al</td>
<td>20</td>
<td>F</td>
<td>Chest and upper back</td>
<td>Striking linear configuration and post-inflammatory hyperpigmentation</td>
<td>Ovarian cyst</td>
<td>Bleomycin, etoposide and cisplatin</td>
</tr>
<tr>
<td>Adjade et al</td>
<td>37</td>
<td>M</td>
<td>Trunk</td>
<td>Linear flagellate erythema</td>
<td>Testicular seminoma</td>
<td>Bleomycin, etoposide and cisplatin</td>
</tr>
<tr>
<td>Turan Erkek</td>
<td>24</td>
<td>F</td>
<td>Back, shoulders and trunk</td>
<td>Papules and plaques remarkable whip-like mark formation</td>
<td>Hodgkin lymphoma</td>
<td>Doxorubicin, bleomycin, vincristine, cyclophosphamide, etoposide, prednisone and procarbazine</td>
</tr>
<tr>
<td>Krajewski et al</td>
<td>33</td>
<td>M</td>
<td>Back and shoulders</td>
<td>Pruritic and linear hyperpigmentation</td>
<td>Seminoma</td>
<td>Bleomycin, etoposide and cisplatin</td>
</tr>
<tr>
<td>Cullingham et al</td>
<td>32</td>
<td>M</td>
<td>Back</td>
<td>Pruritic and linear rash</td>
<td>Seminoma</td>
<td>Bleomycin, etoposide and cisplatin</td>
</tr>
<tr>
<td>Biswas et al</td>
<td>13</td>
<td>M</td>
<td>Trunk and upper extremities</td>
<td>Linear erythematous lesion</td>
<td>Thalamic mixed germ cell tumour</td>
<td>Bleomycin, etoposide and cisplatin</td>
</tr>
</tbody>
</table>

Patient consent for publication

Consent obtained from parent(s)/guardian(s).

Provenance and peer review

Not commissioned; externally peer reviewed.

Open access

This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

Case reports provide a valuable learning resource for the scientific community and can indicate areas of interest for future research. They should not be used in isolation to guide treatment choices or public health policy.

ORCID ID

Sri Mariyani http://orcid.org/0000-0001-9561-6948

