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DESCRIPTION
A boy with hemizygous SLC16A2 variant (Xq13.2; 
p.R371C) Allan-Herndon-Dudley syndrome 
(AHDS) presented with new-onset seizures. Phys-
ical examination revealed normal contour of the 
cranium and a normal hairline. The face exhibited 
a long and narrow profile, but individual features 
were unremarkable in size, shape or position. 
Neurological examination was notable for central 
hypotonia and developmental delay. MRI demon-
strated a T2-hyperintense, T1-isointense cortical 
lesion along the left inferior mesial temporal 
lobe consisting of cystic and solid components, 
without reduced diffusivity, and multiple solid 
enhancing nodules on postgadolinium sequences 
(figure  1). The neuroradiographic differential 
diagnosis included ganglioglioma, dysembryo-
plastic neuroepithelial tumour and pleomorphic 
xanthoastrocytoma, with lesser consideration for 
pilocytic astrocytoma. A stereotactic biopsy of the 
lesion was performed, and neuropathological eval-
uation revealed biphasic neoplastic architecture 
comprising regions of densely compact eosinophilia 
and other, more microcystic, areas (figure  2A). 

Piloid cells and a fibrillar background with focal 
Rosenthal fibres were visible within the compact 
eosinophilic areas. Large dysmorphic ganglion 
cells with vesicular chromatin were interspersed 
throughout the tumour, in addition to intermixed 
lymphocytic infiltrates. No significant mitotic 
activity, necrosis or microvascular proliferation 
were observed. Immunostaining revealed a mixed 
population of neoplastic cells, with some neoplastic 
cells and the fibrillar background immunopositive 
for glial fibrillar acidic protein and other neoplastic 
cells immunopositive for synaptophysin and NeuN 
(figure  2B). Sparse (2%) Ki-67 immunopositivity 
and numerous leucocytes positive for leucocyte 
common antigen were detected; BRAF p.V600E 
was not observed (not shown). Microarray analysis 
and next-generation sequencing (NGS) of tumour 
tissue detected no clinically significant abnor-
malities. However, NGS revealed six variants of 
uncertain significance in PBRM1 (c.3505C>G), 
FAT1 (c.4434C>G), TRRAP (c.3636G>C), TSC1 
(c.3008C>T), DDIT3 (c.466C>T) and SOX9 
(c.769C>T). The functional pathogenic likelihood 
of each variant, according to the American College 
of Medical Genetics and Genomics guidelines,1 
was predicted using the InterVar tool based on 
human reference genome hg38.2 3 The mutations in 
PBRM1, FAT1, TSC1 and DDIT3 were classified as 
‘pathogenic’, while those in TRRAP and SOX9 were 
predicted to be ‘benign’. Overall, the neuropatho-
logical findings were considered most consistent 
with a diagnosis of ganglioglioma (WHO Grade 
1), a rare central nervous system (CNS) tumour.4 
The patient remains stable under neuroimaging 

Figure 1  Neuroimaging features of a ganglioglioma 
in a child with Allan-Herndon-Dudley syndrome. Fluid-
attenuated inversion recovery MRI sequence reveals a 
diffuse infiltrative left temporal lobe tumour (A), without 
reduced diffusivity (B), and multiple areas of punctate 
enhancement on postgadolinium sequences (C, D).

Figure 2  Neuropathological features of the 
ganglioglioma. (A) H&E staining showing moderately 
cellular mixed proliferation of glial and neuronal cells 
with extensive calcification. A rare mitotic figure (<1/10 
per high-power field; Ki-67 ~2% of tumour cells) and 
perivascular lymphocytic cuffing were identified. (B) NeuN 
immunohistochemistry showing atypical neuronal cells 
highlighted with clustering and binucleation; background 
cells were positive for glial fibrillar acidic protein (not 
shown). 400× magnification; scale bar=50 µm.
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observation more than 2 years postdiagnosis and seizure-free on 
antiseizure therapy.

AHDS is caused by loss-of-function mutations in X-linked 
SLC16A2,5–9 which encodes a transporter specific for thyroid 
hormone delivery to the developing brain.10 11 Cerebral hypo-
thyroidism is severely detrimental to neurodevelopment,12 13 and 
clinical supplementation with thyroid hormone or its derivative 
has produced mixed results.14–17 AHDS consequently exhibits a 
profound, heterogeneous clinical presentation featuring cranio-
facial deformity, intellectual disability and neurological abnor-
malities including seizures, developmental delay and impaired 
mobility.18 19 We report the first case of a ganglioglioma—and 
perhaps the first CNS tumour overall—in a paediatric patient 
with AHDS. Although gangliogliomas preponderantly exhibit 
BRAF mutations, particularly p.V600E,20–24 that activate MAP 
kinase pathways,21 25 these were not observed in our patient’s 
ganglioglioma, which presented a novel mutation profile. 
Gangliogliomas are proposed to arise from dysplastic clonal 
precursors,26 27 and thyroid hormone preeminently influences 
neural stem cells and progenitors.28–30 However, whether AHDS 
pathophysiology influenced emergence of the ganglioglioma in 
this patient or it arose stochastically is indeterminate and may be 
worthy of future investigation.

Learning points

	► Allan-Herndon-Dudley syndrome (AHDS) is a multisystemic 
developmental disorder characterised by a heterogeneous 
clinical presentation that can include craniofacial deformity, 
severe intellectual disability and neurological abnormalities.

	► AHDS results from loss-of-function mutations of SLC16A2, an 
X-linked gene that encodes a transporter to deliver thyroid 
hormone to the brain during development.

	► We present the first case of a ganglioglioma with novel 
molecular features in a patient with AHDS that may be 
worthy of future investigation.
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