Respiratory failure caused by cardiac dysfunction triggered by bronchiolitis

Suzu Imamura, Kenichi Tetsuhara, Shunsuke Fujii, Mamoru Muraoka

A 3-month-old female weighing 3.6 kg, with trisomy 21, who had undergone pulmonary artery banding for atrioventricular septal defect 2.5 months prior to the presentation was referred to our hospital because of nasal discharge and cough for 3 days and wheezing and decreased feeding for 1 day before admission. On arrival, her vital signs were respiratory rate, 60 breaths/min; oxygen saturation, 90% (oxygen mask 5 L/minute); heart rate, 138 beats/min and axillary temperature, 36.5°C. Physical examination revealed subcostal retraction, prolonged expiration, diminished breath sounds, expiratory wheezing on bilateral lungs, grade III/VI pansystolic murmur, hepatomegaly, livedo reticularis and cold extremities. According to multiplex PCR, she was positive for respiratory syncytial virus (RSV). On chest X-ray, extensive infiltrative shadows were observed in the left lung field. Although she has not been diagnosed as asthma, salbutamol inhalation was administered as diagnostic intervention for acute exacerbation of it; however, it did not improve respiratory distress. We suspected respiratory failure caused by bronchiolitis and compensated shock secondary to poor oral intake; thus, she was admitted to the intensive care unit.

Thereafter, point-of-care echocardiography revealed diffuse hypokinesis, and the left ventricular ejection fraction was 33.1% (video 1). The brain natriuretic peptide level was 9791 pg/mL. Despite receiving endotracheal intubation and mechanical ventilation, oxygenation deteriorated; oxygen saturation was 70% with fraction of inspiratory oxygen of 1.0 and positive end-expiratory pressure of 14 cmH2O. We suspected acute exacerbation of heart failure and pulmonary hypertension. Therefore, dobutamine, diuretics and nitric oxide inhalation were initiated. Consequently, oxygenation gradually improved with oxygen saturation of 94% after nitric oxide inhalation, and the cardiac function also improved on the following day (video 2). She was extubated after 10 days and discharged 31 days after admission.

In this case, respiratory failure was caused by cardiac dysfunction triggered by RSV infection. RSV infection can lead to severe illness in infants with congenital heart disease.1 With infection, cardiac function may deteriorate in children with congenital heart disease.2 Therefore, point-of-care echocardiography should be performed in patients suffering from respiratory distress or respiratory tract infection with an identified pathogenic microorganism, especially if they have a history of heart disease.

The patient’s mother said ‘when she was admitted to the hospital, I only wanted her to survive.’

Learning points
► Point-of-care echocardiography should be performed in children with respiratory distress or respiratory tract infection with an identified pathogenic microorganism, especially if they have a history of cardiac disease.
► Respiratory syncytial virus infection can lead to severe illness in infants with congenital heart disease.
We assumed that the left ventricular systolic dysfunction of this patient was induced by afterload elevation caused by agitation from dyspnoea, hypovolaemia secondary to poor oral intake, and infection. Considering the presence of cardiac dysfunction and infection, myocarditis is an important differential diagnosis in this case. Improvement of myocarditis takes weeks. However, in this case, cardiac function improved the next day after admission. Thus, myocarditis was less likely.

Acknowledgements We thank Dr. Yoshihiko Kodama and Dr. Keiichiro Mizuno for treatment of the patient and critical advice on the manuscript, and Dr. Noriuki Kaku, Dr. Shoji Fukuoka, and Dr. Wakato Matsuoka for treatment of the patient.

Contributors SI wrote the manuscript under the supervision of KT, SF and MM.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient consent for publication Obtained.

Provenance and peer review Not commissioned; externally peer reviewed.

ORCID ID Kenichi Tetsuhara https://orcid.org/0000-0001-6473-0326

REFERENCES