Left ventricular endomyocardial biopsy guided by intracardiac echocardiography via a trans-septal approach

Yasuhiro Yokoyama, Kenichiro Yamagata, Hideaki Kanzaki, Kengo Kusano

DESCRIPTION

A 29-year-old woman was referred to our hospital for catheter ablation (CA) due to symptomatic atrial fibrillation (AF), after two failed CA attempts at another hospital. She had presented with left ventricular dysfunction at the age of 1 year, with a suspected diagnosis of endocardial fibroelastosis (EFE) based on the high echo brightness of the endocardium. She had subsequently undergone endomyocardial biopsy (EMB) of the right ventricle at the age of 18 years, with no histopathological evidence of EFE. Biopsy of the left ventricular myocardium, which was not possible in the previous hospital, was indicated to determine the need for heart transplantation. We planned to perform the biopsy during the CA procedure.

Transesophageal echocardiography revealed a left ventricular spherical dilation and wall motion abnormality (figure 1A, video 1). Cardiac MRI revealed a thinning of the inferoseptal aspect of the left ventricle, with an increased extracellular volume fraction (figure 1B). Heart palpitation during AF negatively impacted her quality of life. Her heart failure status was associated with left ventricular dysfunction, although without evidence of pathological EFE findings. After careful consideration, we decided to perform, sequentially, left ventricular EMB for histopathological diagnosis and CA for AF, under general anaesthesia.

After trans-septal puncture, via the femoral vein, an 8-Fr intracardiac echocardiograph (SOUNDSTAR, Biosense Webster, Diamond Bar, California) and an 8.5-Fr deflectable sheath (Agilis Sheath, St. Jude Medical, St.-Paul, Minnesota) were placed in the left atrium. To approach the left ventricle, the trans-septal puncture was performed...
at the point where the left atrial appendage could be observed in the ICE image. Under ICE guidance, the deflectable sheath was bent and aimed to the middle of the mitral valve annulus. Thereafter, the bioptome was inserted into the left ventricle and directed to the high echoic lesion in the thinned region of the inferoseptal wall of the left ventricle. However, specimens could not be obtained from the site of the lesion due to slippage of the bioptome (figure 2A, video 2). The bioptome was then advanced to the mid-posterior wall of the left ventricle where EMB was successfully performed, with two specimens obtained for diagnostic purposes (figure 2B, video 3). The total EMB procedure time was 14 min and the dose area product was 95.1 mGy·cm². After EMB, CA was performed without complication, including no mitral valve regurgitation, and the sinus rhythm was restored.

Pathological examination of the specimens revealed an endocardial fibrous thickening and interstitial fibrosis of the left ventricle (figure 3). These findings were not observed in the previous specimens from the right ventricle and were indicative of secondary EFE.

The overall complication rate for EMB is low, at 1%–2% for experienced surgeons. However, when complications do occur, such as cardiac perforation or valve regurgitation, these are occasionally lethal, especially in patients with previous heart disease. ICE-guided EMB has a potential to reduce EMB-related complication as it enables direct visualisation of the bioptome to avoid performing a biopsy from critical locations. Notably, sampling errors do occur frequently in cases with a localised lesion, such as cardiac sarcoidosis. ICE guidance for EMB can be helpful in this regard, with previous studies having described its benefit for EMB from the right atrium and ventricle. To our knowledge, this is the first report of ICE-guided EMB from the left ventricle, via a trans-septal approach.

Contributors YY, KY and KFK wrote the manuscript. YY, KY and HK performed this procedure.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

ORCID iDs
Yasuhiro Yokoyama http://orcid.org/0000-0001-9307-0486
Kenichiro Yamagata http://orcid.org/0000-0002-9571-7017

REFERENCES
