Acute pancreatitis in a patient with COVID-19

Rawan A Rahman AlHarmi 1, Tahera Fateel 1, Jalila Sayed Adnan 2, Kamel AlAwadhi 1

SUMMARY
COVID-19 mainly causes pulmonary disease. Involvement of gastrointestinal and hepatobiliary systems, among other systems, has been reported. We report a case of acute pancreatitis in a patient with resolving COVID-19 pneumonia. History taking and investigations excluded other causes of pancreatitis. This case demonstrates the possibility of pancreatic injury in patients with COVID-19, in line with previously reported similar cases. We believe that it is imperative to screen patients presenting with acute pancreatitis for SARS-CoV-2. It is also important to take into consideration that patients with a complicated course who require an invasive procedure such as drainage might pose a risk of transmission to the operating surgeon or interventionist.

BACKGROUND
COVID-19, caused by SARS-CoV-2, mainly causes pulmonary disease. It emerged and was first identified in Wuhan, China in hospitalised patients with pneumonia of unknown origin between December 2019 and January 2020. However, extrapulmonary manifestations affecting gastrointestinal and hepatobiliary systems, among other systems, have been reported. Patients can present with symptoms including anorexia, nausea and/or vomiting, diarrhoea and abdominal pain. We report a case of acute pancreatitis in a patient with COVID-19 pneumonia without any other known causes.

CASE PRESENTATION
This patient is a 52-year-old woman with a medical history of type 2 diabetes mellitus, hypertension, hypothyroidism and morbid obesity. The patient developed symptoms of fever, dry cough and shortness of breath over a duration of 1 week and tested positive for SARS-CoV-2 through a nasopharyngeal swab, detected by real-time reverse transcription PCR, with a cycle threshold value of 24. The patient denied abdominal pain on initial presentation. Contact with a positive case was reported. The patient was admitted to an isolation facility as per national protocols for mildly symptomatic patients hence was not done. Inflammatory markers were within normal limits. Lipase is not available in our laboratory and those done to rule out the causes of acute pancreatitis. Liver function tests revealed a mild increase in gamma-glutamyl transferase (GGT) and alanine aminotransferase and were otherwise within normal ranges. On the sixth day, she developed worsening of cough and shortness of breath with hypoxia and was hence transferred to a treatment facility designated for cases with moderate pneumonia. Chest radiograph showed bilateral infiltrates and so she was treated as COVID-19 pneumonia as per protocol (figure 1A–C). The patient was started on a steroid course for a total of 15 days (including dexamethasone and methylprednisolone), ceftriaxone, doxycycline, azithromycin, enoxaparin, vitamin D, zinc, fluticasone furoate/vilanterol, salbutamol, ipratropium bromide, pantoprazole, omeprazole, metoclopramide and paracetamol, in addition to her regular home medications (table 1).

INVESTIGATIONS
Laboratory investigations done on consulting general surgery are summarised in table 2 including those done to rule out the causes of acute pancreatitis. Liver function tests revealed a mild increase in gamma-glutamyl transferase (GGT) and alanine aminotransferase and were otherwise within normal limits. Lipase is not available in our laboratory and hence was not done. Inflammatory markers were generally improving.

DIFFERENTIAL DIAGNOSIS
Initially, we thought that pancreatitis was caused by hypertriglyceridaemia; however, lipid profile was repeated and triglyceride level was almost normal. The patient did not undergo any invasive procedure, namely endoscopic retrograde cholangiopancreatography nor recent surgery. No previous similar episodes to suggest chronic nature or genetic predisposition were reported. No recent trauma, exposure to envenomation nor ischaemic...
insult was reported. Anatomical pancreatic anomalies were not evident on imaging studies. Personal history was negative for pancreatic cancer. Moreover, during her hospital course, our patient received multiple drugs that have been associated with pancreatitis, so drug-induced acute pancreatitis is possible (table 1). Nevertheless, with a multitude of cases published of patients with COVID-19 developing pancreatitis, an association is possible.

TREATMENT
The patient was transferred to a regular surgical ward for further management. From a surgical point of view, she was started on conservative management including intravenous fluids and bowel rest. Oral intake was resumed gradually as tolerated. From a surgical point of view, she was started on conservative management including intravenous fluids and bowel rest. Oral intake was resumed gradually as tolerated.

Figure 2 Axial cuts of intravenous contrast-enhanced CT of the abdomen at the level of the pancreas. Mild fatty infiltration of the pancreatic parenchyma is noted with mild diffuse peripancreatic fat stranding and focal single small volume fluid collection anterior to the neck of the pancreas (arrow). No necrosis, calcification or haemorrhage. According to Balthazar score, the CT severity index is 3. This score is consistent with mild acute pancreatitis.

OUTCOME AND FOLLOW-UP
The patient stayed for a total of 23 days in the hospital, of which 9 days were under the care of general surgery. The patient was seen in the general surgery outpatient clinic 10 days following discharge on a follow-up visit and was doing well.

DISCUSSION
Acute pancreatitis is an inflammatory condition of the exocrine pancreas, caused most commonly by gallstones and alcohol consumption. Acinar cell injury and impaired zymogen secretion leading to intrapancreatic protease activation underlie this disease. Diagnosis requires two out of three criteria: typical history, elevated serum amylase or lipase more than three times the upper limit of normal for the laboratory reference range and suggestive imaging findings.4 Several viruses have been implicated in the aetiology of acute pancreatitis. These include cytomegalovirus, Epstein-Barr virus, hepatitis A–E viruses, herpes simplex virus, varicella zoster virus, mumps, measles and coxsackie virus, among others. The exact mechanism by which viruses cause pancreatitis is unknown and each virus might cause pancreatitis through a different mechanism. These mechanisms include viral replication in pancreatic acinar cells resulting in protease leakage and activation, in addition to cholangiopathy and ampullary oedema.5

COVID-19 is caused by SARS-CoV-2. SARS-CoV-2 enters the host cells via its spike (S) protein which binds to angiotensin-converting enzyme 2 (ACE2). In the initial phase of the disease, infection of the upper respiratory tract ACE2-expressing nasal epithelial cells occurs in asymptomatic individuals. Later in the disease course, infection of lower respiratory tract ACE2-expressing cells causes pneumonitis.6 The virus mainly causes pulmonary disease; however, extrapulmonary manifestations affecting gastrointestinal and hepatobiliary systems, among other systems, have been reported. Pathophysiology is likely multifactorial. Mechanisms suggested include direct tissue damage, inflammation-mediated damage and microvascular

Figure 3 (A) Chest CT scan (lung window) showing bilateral peripheral areas of ground-glass opacity, changes during the peak stage of known COVID-19 infection. (B,C) Chest CT scan (lung window) showing massive consolidation in the posterior parts of the lower lung lobes, changes of peak stage of known COVID-19 infection.
Table 2 Summary of laboratory investigations

<table>
<thead>
<tr>
<th>Laboratory investigation</th>
<th>Results</th>
<th>Laboratory reference range</th>
</tr>
</thead>
<tbody>
<tr>
<td>White cell count, ×10⁹/L</td>
<td>19</td>
<td>3.9–9.6</td>
</tr>
<tr>
<td>Serum amylase, U/L</td>
<td>47</td>
<td>30–118</td>
</tr>
<tr>
<td>Urinary amylase, U/L</td>
<td>219</td>
<td><650</td>
</tr>
<tr>
<td>Arterial blood gas on room air</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>7.472</td>
<td>7.35–7.45</td>
</tr>
<tr>
<td>Partial pressure of carbon dioxide, mm Hg</td>
<td>34.9</td>
<td>35–45</td>
</tr>
<tr>
<td>Partial pressure of oxygen, mm Hg</td>
<td>70.8</td>
<td>80–100</td>
</tr>
<tr>
<td>Oxygen saturation, %</td>
<td>95.3</td>
<td>95–100</td>
</tr>
<tr>
<td>Bicarbonate (HCO₃⁻), mmol/L</td>
<td>26.3</td>
<td>22–28</td>
</tr>
<tr>
<td>Lactic acid, mmol/L</td>
<td>2.9</td>
<td>0.2–1.8</td>
</tr>
<tr>
<td>Calcium, mmol/L</td>
<td>2.38</td>
<td>2.15–2.50</td>
</tr>
<tr>
<td>Total bilirubin, μmol/L</td>
<td>4</td>
<td>5–21</td>
</tr>
<tr>
<td>Gamma-glutamyl transferase, U/L</td>
<td>102</td>
<td>5–55</td>
</tr>
<tr>
<td>Alanine aminotransferase, U/L</td>
<td>37</td>
<td><33</td>
</tr>
<tr>
<td>Triglyceride (initial), mmol/L</td>
<td>3.4</td>
<td>0.2–1.8</td>
</tr>
<tr>
<td>Triglyceride (1 day later), mmol/L</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>Parathyroid hormone, pmol/L</td>
<td>7.5</td>
<td>1.96–9.33</td>
</tr>
<tr>
<td>IgG, g/L</td>
<td>9.27</td>
<td>5.4–16.5</td>
</tr>
<tr>
<td>C reactive protein, mg/L</td>
<td>1.09</td>
<td>0–3</td>
</tr>
</tbody>
</table>

Injury as observed in the small bowel. Moreover, in a study by Liu et al, expression of ACE2 in normal pancreases was found to be slightly higher than that of the lungs and it was expressed in both the exocrine glands and islets of the pancreas. The study shed light on the possibility of pancreatic injury in patients with COVID-19, based on the above findings and on a cohort of patients with non-severe and severe disease who exhibited features of pancreatic involvement. Additionally, Schepis et al reported the detection of SARS-CoV-2 RNA in a fluid sample obtained from a pancreatic pseudocyst in a patient with COVID-19 pneumonia and acute pancreatitis.

Several cases of pancreatitis in patients with COVID-19 were reported. Gonzalo-Voletas et al reported a case of pancreatitis from Spain in the absence of the most common risk factors: alcohol and gallstones. Lakshmanan and Malik also reported a case of a nursing home resident who tested positive for SARS-CoV-2 following an outbreak at his residence and developed pancreatitis a few days later. Moreover, Brikman et al reported a case of a patient with COVID-19 pneumonia who developed acute pancreatitis 14 days following admission. The patient did not have any history of pancreatitis, gallstones nor alcohol intake. Further supportive data are provided by Meireles et al in a report of a patient with COVID-19 pneumonia who developed acalculous pancreatitis on the 11th day of the disease in whom other viral causes have been ruled out by laboratory investigations. Additional similar cases were reported by Aloysius et al, Kataria et al, Mazrouei et al, Karimzadeh et al, Hadi et al, Kumaran et al and Wang et al.

Reports from Wahan, China provide great insight into this possible association. Among 52 patients with COVID-19 pneumonia, 9 (17%) were found to have pancreatic injury. Patients with pancreatic injury were noted to have a more severe illness on admission. They were more likely to have loss of appetite and diarrhoea. With regard to laboratory values, they were noted to have higher levels of aspartate aminotransferase, GGT, creatinine, lactate dehydrogenase and erythrocyte sedimentation rate. Interesting findings are provided by Szatmary et al on the characteristics of patients with COVID-19 and pancreatitis. They suggest that a combination of male sex, abdominal pain, pancreaticoduodenal inflammation with steatosis on imaging and metabolic stress (indicated by elevation of glucose and triglyceride) represents a distinct subset of patients in whom the endocrine pancreas is particularly vulnerable. Moreover, a paediatric case has also been reported. The child presented with multisystem inflammatory syndrome, with acute pancreatitis being the initial manifestation of this syndrome.

During her hospital course, our patient received multiple drugs that have been associated with pancreatitis (table 1). These include dexamethasone, omeprazole, paracetamol, ceftriaxone and doxycycline. Accordingly, drug-induced pancreatitis can still be considered.

Linking acute pancreatitis to COVID-19 requires further investigation to establish an association. Acute pancreatitis is a common disease and can often be idiopathic with no identifiable aetiology. Besides, many patients with COVID-19 who are considered contagious might have not been investigated thoroughly with tests such as endoscopic ultrasonography so some causes might have been missed. It should also be taken into consideration that many reported cases have had heterogeneous results, making it difficult to draw conclusions. Nevertheless, pancreatitis seems to be an uncommon complication of COVID-19. A study from the USA revealed a point prevalence of 0.27% of acute pancreatitis in hospitalised patients with COVID-19. Another study from Spain reported a frequency of 0.07%. Further studies are needed to evaluate the incidence compared with that of pre-COVID-19 times.

What does this mean to us as surgeons? The pancreas can be involved in COVID-19 infection. However, acute pancreatitis should be diagnosed based on the standard criteria as elevation of pancreatic enzymes is also seen in COVID-19 infection without pancreatitis. Patients with a complicated course who require an invasive procedure such as drainage might pose a risk of transmission to the operating surgeon or interventionist so precautionary measures must be taken.

To sum up, in our patient, routine investigations were carried out to determine the cause of pancreatitis and many causes were ruled out. Although causality cannot be established through this case report only, we believe that COVID-19-induced pancreatitis is still to be considered, in line with the above case reports. Further data are required to determine the impact of this virus on the pancreas and the underlying pathophysiology.

Learning points

- Several viruses have been implicated in the aetiology of acute pancreatitis.
- The exact mechanism by which viruses cause pancreatitis is unknown.
- The pancreas can be involved in COVID-19 infection.
- It is imperative to screen patients presenting with acute pancreatitis for SARS-CoV-2.
- Further studies are required to determine the association between pancreatitis and COVID-19.

Contributors RARA: manuscript preparation. TF: preparation of images and captions. KA: primary consultant and revision of manuscript.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.
Case report

Patient consent for publication Obtained.

Provenance and peer review Not commissioned; externally peer reviewed.

This article is made freely available for use in accordance with BMJ’s website terms and conditions for the duration of the covid-19 pandemic or until otherwise determined by BMJ. You may use, download and print the article for any lawful, non-commercial purpose (including text and data mining) provided that all copyright notices and trade marks are retained.

ORCID ID
Rawan A Rahman AlHarmi http://orcid.org/0000-0002-7097-261X

REFERENCES