Phakochronology: using fossilised lenticular scar to calculate rate of lens growth

Shorya Vardhan Azad, Sudarshan Khokhar, Amber Amar Bhayana, Anusha Agrawal

DESCRIPTION
A 58-year-old man gave a history of injury with chisel while hammering 16 years ago for which he did not seek any form of treatment and had no vision loss at the time. On examination, he had a self-sealed corneal perforation with a localised iris defect (figure 1A). On pupillary dilatation, a localised anterior fibrotic plaque was seen on the lens capsule and behind it was a lenticular opacity (figure 1B,C); with a clear lenticular area between the two (figure 2A,B). Fundus showed a well-capsulated foreign body inferonasal to the disc with localised pigmented changes (figure 2C). The corneal perforation, the iris defect and the lenticular opacities all were present in the same straight line and were somewhat collinear with the location of the foreign body in the posterior segment. They clearly represent the trajectory of the foreign body. Anterior segment optical coherence tomography was done through the lenticular opacity trajectory and the intralenticular opacity was found to be 480 μm posterior to the anterior fibrotic capsule (figure 2A,B).

Crystalline lens is a unique organ in that it grows throughout life. Equatorial cells keep proliferating to produce new lens fibres which keep on accreting posteriorly. The old fibres are not shed but keep on accumulating interiorly causing what we know as nuclear sclerosis.1 2 So hypothetically, a mark if left on a lens fibre should embed deeper in the lens with time. In our case, the entry point opacity in the lens substance should have been on the surface. The fact that it is located 480 μm posterior to anterior capsule suggests that equitorial lens epithelium must have remained active to produce 480 μm of clear lens fibres over the time thus shifting the opacity posteriorly just like a fossil which got preserved inside the crystalline lens. Injury happened on 8 November 2004 (5854 days ago). So the time taken for these many microns of lens fibres to accumulate was 5854 days. Theoretically speaking, we can calculate the rate of production of lens fibres to be around 81.99 nm/day or 0.030 mm/year. In vivo lenticular growth rates in adults have been documented in very few studies and range from 0.013 to 0.025 mm/year.3–6

In vitro rate of lens growth has been described to be 1.38 mg/year increase of wet weight; 1.24 mg/year in Indian population.2 7 The rate of lens fibre production might depend on the age and local environmental milieu with genetic variation as well. The rate of lens growth that we have calculated is individualised to this currently 58-year-old man who had a history of open globe injury with direct lenticular trauma. The rate of lens fibre production in linear dimension (as calculated by us) may not exactly corroborate with the weight gain because nuclear compaction has not been taken into account and can not be predicted. The method we have used is called phakochronology which describes the technique for determining the time of events affecting the lens from the distance between the capsule and the region of interest.3 Hypothetically, one way to do is to inject a marker...
in vivo inside the crystallin lens and note its displacement over time. But, it will have ethical issues and such a study can never be conducted.

Contributors SK and SVA contributed to manuscript editing. AAB contributed to concept, diagnosis, manuscript preparation. AA contributed to retrieval of data.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient consent for publication Obtained.

Provenance and peer review Not commissioned; externally peer reviewed.

ORCID ID
Amber Amar Bhayana http://orcid.org/0000-0002-0770-601X

REFERENCES