Lung cavitation due to COVID-19 pneumonia

Vijairam Selvaraj, Kwame Dapaah-Afriyie

DESCRIPTION

A 52-year-old man with a recent diagnosis of COVID-19 3 weeks ago presented to the hospital with multiple episodes of haemoptysis, intermittent cough and shortness of breath. There was no history of haematemesis, epistaxis, fever, chills, night sweats or weight loss. He had been discharged 1 week prior for right-sided segmental and subsegmental pulmonary emboli and right leg deep venous thrombosis, which was treated with apixaban. The initial CT scan of the chest also showed bilateral multifocal patchy airspace disease consistent with COVID-19 pneumonia (figure 1).

Physical examination on admission revealed a few coarse crackles bilaterally. Repeated CT scan of the chest revealed opacity in the left upper lobe with cavitation (figure 2) and small left-sided pneumothorax, which were new from prior imaging. He maintained adequate oxygen saturation on room air and was discharged home on apixaban. He presented to the hospital 2 weeks later with recurrent haemoptysis and shortness of breath. CT scan of the chest revealed multiple new cavitary lesions bilaterally with the largest lesion in the left lower lobe (figure 3). Infectious diseases, rheumatology and pulmonology consultants recommended an extensive workup including mycobacterial, autoimmune, HIV and fungal tests that were negative. Laboratory workup was significant for mild eosinophilia and Antinuclear Antibody titres of 1:160. Peak C-Reactive Protein level was 259 mg/L, and peak oxygen requirement was noted to be 4 L/min. Reverse transcription-PCR assays for Severe Acute Respiratory Syndrome-CoV-2 (SARS-CoV-2) were persistently positive. Bronchoscopy was performed, and bronchoalveolar lavage samples had no growth. He completed a 14-day course of amoxicillin–clavulanate. His symptoms and oxygen requirements gradually improved, and he was discharged home on apixaban with no further haemoptysis episodes.

Cavitary lung lesions are usually related to mycobacterial, parasitic, fungal, autoimmune or neoplastic aetiologies. Typical CT imaging features of COVID-19 mainly include ground-glass and consolidative pulmonary opacities, primarily in the lower lobes. Notably, there is also the absence of cavitation, lymphadenopathy and pleural effusion.1 2 Lung cavitation following pulmonary embolism and infarction has been described previously in non-COVID-19 patients.3 4 In our case, cavitation predominantly occurred in the left lung, whereas pulmonary emboli were primarily noticed in the right lung. The velocity of the development of multiple cavitary lesions in a few weeks was felt to be atypical for Mycobacterium tuberculosis or fungal infections such as aspergillosis and most likely related to complications from COVID-19 pneumonia.

To cite: Selvaraj V, Dapaah-Afriyie K. BMJ Case Rep 2020;13:e237245. doi:10.1136/bcr-2020-237245

© BMJ Publishing Group Limited 2020. No commercial re-use. See rights and permissions. Published by BMJ.

Check for updates

Figure 1 CT scan of the chest with contrast showing bilateral multifocal patchy airspace disease.

Figure 2 CT scan of the chest with contrast with opacity in the left upper lobe with cavitation.

Figure 3 CT scan of the chest showing new 7×5 cm cavitary lesion in the left lower lobe along with previously noted left upper lobe cavitary lesion.
Lung cavitation due to COVID-19 pneumonia is uncommon. Although the exact mechanism of cavitation in COVID-19 pneumonia is unknown, it may be related to diffuse alveolar damage, intra-alveolar haemorrhage and necrosis of parenchymal cells based on prior autopsy reports. While most cases are self-limited and managed conservatively, as in our case, respiratory status must be monitored closely in patients with massive haemoptysis.

The clinical spectrum of disease secondary to SARS-CoV2 continues to evolve. Early and late complications associated with COVID-19 are still unknown. Common causes of cavitary lung lesions must be investigated appropriately in all patients. Clinicians must be aware of evolving CT findings of COVID-19 and must arrange appropriate follow-up of convalescent patients with COVID-19 to ensure complete recovery.

Contributors VS was involved in writing the manuscript. KD-A was involved in obtaining informed consent and also revised the manuscript.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient consent for publication Obtained.

Provenance and peer review Not commissioned; externally peer reviewed.

This article is made freely available for use in accordance with BMJ’s website terms and conditions for the duration of the covid-19 pandemic or until otherwise determined by BMJ. You may use, download and print the article for any lawful, non-commercial purpose (including text and data mining) provided that all copyright notices and trade marks are retained.

REFERENCES