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Abstract   
Accurate and efficient in silico ranking of protein-protein binding affinities is useful for protein design 

with applications in biological therapeutics. One popular approach to rank binding affinities is to apply 

the molecular mechanics Poisson Boltzmann/generalized Born surface area (MMPB/GBSA) method to 

molecular dynamics trajectories. This provides a compromise between rapid but approximate scoring 

functions of single structures and more sophisticated methods such as free energy perturbation. Optimal 

MMPB/GBSA parameters tend to be system specific. Here, we identify protocols that enable reliable 

evaluation of the effect of mutations in a T-cell receptor (TCR) in complex with its natural target, the 

peptide-human leukocyte antigen (pHLA). The development of affinity-enhanced engineered TCRs 

towards a specific pHLA is of great interest in the field of immunotherapy. Our study highlights the 

importance of using a higher than default internal dielectric constant, especially in the case of charge 

changing mutations. Including explicit solvation and/or entropy corrections may deteriorate the ranking 

of single point variants due to the errors associated with these additions. For multi-point variants, 
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however, these corrections were important for accurate ranking. We also demonstrate how potential 

outliers could be identified in advance by analyzing changes in the hydrogen bonding networks at the 

binding interface. Finally, using bootstrapping we show that as few as 5-10 replicas of short (4 ns) MD 

simulations may be sufficient for reproducible and accurate ranking of candidate TCR variants. Our 

work demonstrates that reliably ranking TCR variant binding affinities can be achieved at moderate 

computational cost. The protocols developed here can be applied towards in silico screening during the 

optimization of therapeutic TCRs, potentially reducing both the cost and time taken for biologic 

development.  

 
Author summary    
T-cell receptors (TCRs) recognise an extracellular presentation platform that displays peptides that can 

be derived from infectious agents, or mutated/dysregulated cellular proteins. Soluble TCRs can be 

engineered to bind with enhanced affinity and specificity towards a given protein-peptide complex 

displayed only on diseased cells (i.e., cancerous cells), providing the basis for potent biologic drugs. Here, 

we performed computer simulations that describe how atoms and molecules interact with one another 

with atomistic detail in order to predict how the binding affinity (i.e., how sticky the drug is to its target) 

changes upon mutation of the TCR. By systematically testing different settings and methodologies for our 

binding affinity calculations, we identified optimized protocols to more accurately predict how a given 

mutation (or set of mutations) will impact the binding affinity. We also identified differences in the 

optimal protocol depending on the number of mutations that separate the TCRs. Our resulting calculated 

affinities correlated very well with experimental results, showcasing the promise of incorporating our 

computational approach into the design of affinity-enhanced TCRs for therapeutic use. The protocols 

developed can lead to faster and less expensive development of effective TCR-based treatments for 

various cancers and other diseases.   
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Introduction 
Computational methods to predict the binding affinities of protein-protein interactions (PPIs) that 

are sufficiently accurate, reliable and high throughput have clear potential for application towards the 

rational design of biologic drugs. Many approaches (all with many variations available) including free 

energy perturbation (FEP),  umbrella sampling, molecular docking and machine learning have all been 

applied to predict or rank order PPI binding affinities.[1–4] Here, we focused on the molecular 

mechanics Poisson Boltzmann/generalized Born surface area (MMPB/GBSA) approach,[5] which 

combines conformational sampling using molecular dynamics (MD) simulations with empirical 

calculations on these snapshots to estimate the binding free energy. This approach can be thought of as 

sitting somewhere in between the more accurate but more computationally expensive FEP method, and 

less accurate but computationally cheaper methods like docking.[6] This approach should only be relied 

on for relative binding affinities (i.e., ΔΔG not ΔG) to rank order a set of similar potential drug 

candidates.[6] An advantage of the MMPB/GBSA approach is that it can be decomposed to obtain per-

residue contributions to the binding energy, which we and others have used to identify key residues and 

interactions which drive protein-protein binding.[7–9] The information obtained from this 

decomposition analysis can be used to inform (semi-)rational design efforts towards enhanced affinity 

and/or selectivity drug candidates.[8,10] 

MMPB/GBSA has been used and evaluated extensively for many applications, and it is clear that 

tuning of the parameters and protocols applied can give significant improvements in accuracy, with such 

tuning typically being system specific (see e.g. refs. [6,11–16]). With this in mind, we aimed to identify 

an MMPB/GBSA protocol that provides reliable and accurate relative binding free energies for a PPI of 

great interest in the field of immuno-oncology,[17] the T-cell receptor (TCR) peptide-human leukocyte 

antigen (pHLA) complex (TCR-pHLA, Fig 1). The TCR-pHLA interaction is a vital component of the 

adaptive immune system, with the TCR ultimately responsible for selectively binding specific peptide 

sequences presented on the surface of cells by the HLA. For HLA Class 1 proteins (the focus of this 
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study), the peptides in pHLA complexes are sourced from proteins digested inside the cell: each cell 

presents peptide fragments of its cellular proteins on the extracellular surface. In the natural immune 

system, TCRs can specifically identify antigenic peptide sequences presented by unhealthy (e.g. 

cancerous) cells, enabling the immune system to subsequently eradicate these cells.[18]  

 

Fig 1. A. Overview of the TCR-pHLA complex. The T-cell receptor (TCR) is comprised of two (α and 

β) domains, which engage the peptide-human leukocyte antigen (pHLA) complex. B. Zoom in on the 

TCR-pHLA binding site from two different angles, demonstrating that the binding interface is 

composed of six CDR loops on the TCR, which engage both the peptide and two α-helices on the pHLA 

complex.  

 

Taking advantage of these natural mechanisms of the immune system, affinity-enhanced, soluble, 

engineered TCRs are a class of therapeutic molecules which are designed to target a specific antigenic 

pHLA complex presented only by unhealthy (e.g. cancerous) cells, whilst simultaneously not binding 

the considerably large number of other pHLA complexes presented by “healthy” cells (in order to avoid 
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off-target toxicity).[19] This provides two deeply intertwined engineering challenges which must be 

addressed in order to produce a therapeutic TCR.[20] That is, TCRs must have both strong affinity 

(natural TCRs have affinities in the ~µM range,[21] whilst therapeutic soluble TCRs are in the ~pM 

range) and high specificity (to avoid the large number of off-targets). Whilst most TCR affinity 

engineering studies reported in the literature have obtained affinity enhancement through experimental 

approaches (primarily those that utilize in vitro selection),[22–27] docking[28,29] and structure based-

rational design[30] have also been successfully applied to engineer TCRs. Here, we envisage 

MMPB/GBSA as a technique that could be used to filter promising candidate mutations generated 

through a more high-throughput technique such as docking prior to experimental screening.  

To date there has been no systematic study on how best to predict TCR-pHLA binding affinities 

using MMPB/GBSA, and herein, we aim to resolve this. To do this, we have evaluated a variety of 

MMPB/GBSA calculation protocols using two different TCR-pHLA test sets, one with 18 TCR variants 

with between 3-14 mutations (spread over most CDR loops) and one with 29 variants, of which 25 have 

just one mutation. The use of these two disparate test sets should allow us to identify a single protocol 

(if one exists) that works for both TCR-pHLA complexes and thus may be generally applicable for this 

biologically and therapeutically important protein-protein interaction.  
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Results and discussion 

In this study, we assessed the capability of MMPB/GBSA calculations to reproduce TCR-pHLA 

binding affinity relationships on two different test sets. The first (1G4) test set, is composed of 18 TCR 

variants all containing between 3-14 mutations from the WT, with mutations spread between 1-5 CDR 

loops.[26,31] In contrast, the second (A6) test set is composed of 29 TCR variants, with 25 of these 

being single point variants and the remaining 4 baring between 2-4 mutations.[29,32] The aim is to 

identify a protocol that is not only reliable and reproducible, but that works well for both test sets 

studied here. With this in mind, we build on recommendations of others[15,33–36] in our use of many 

replicas of short MD simulations to obtain snapshots for MMPB/GBSA calculations. This “ensemble” 

based approach has been shown to outperform single or few replica simulations of much longer length, 

both in terms of reliability and predictability.[33,35] Specifically, we performed 25 independent MD 

simulations of 4 ns long were performed, and used frames collected every 10 ps from the last 3 ns of 

each as input for MMPB/GBSA calculations (meaning a total of 7500 frames were used per TCR-pHLA 

complex). The prediction accuracy was assed using both Pearson’s r (rp) and Spearman’s rank (rs), as rp 

measures the linear correlation between experiment and simulation whilst rs asses the ability to rank 

order binding affinities (arguably of more importance in a design context).  

 

Modulation of the internal dielectric constant drastically improves predictability.  

For both the 1G4 and A6 TCRs test sets investigated herein, we assessed the ability of both 

MMPBSA and MMGBSA to predict relative binding affinities (Fig 2). Further, given previously 

reported successes at improving the quality of prediction for other systems,[6,37–40] we assessed the 

benefit of modifying the internal dielectric constant (𝜖!"#) for the MMPBSA calculations.  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2021. ; https://doi.org/10.1101/2021.06.21.449221doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.21.449221
http://creativecommons.org/licenses/by/4.0/


6 

 

 

Fig 2.  Modulation of the interior dielectric constant improves MMPBSA predictability. A+B. Determined Spearman’s 

rank (rs) and Pearson’s r (rp) values for MMPB/GBSA calculations for the 1G4 (A) and A6 (B) test sets. Results are plotted 

with and without the three identified outliers described in the text for both data sets. C+D. Exemplar scatter plots with lines 

of best fit for the 1G4 (C) and A6 (D) test sets using either MMGBSA or MMPBSA (at different internal dielectric 

constants) methodology. For C+D, outliers are labelled. Scatter plots in panels C+D are also colored according to the number 

of charged mutations made between the variant and the WT.  Complete scatter graphs for all results are provided in S1 and 

S2 Figs. 

 

First, in the 1G4 test set, and to a lesser extent the A6 test set, increasing the 𝜖!"# used in the 

MMPBSA calculations progressively improves the prediction quality, with the effect largely flattening 
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out for internal dielectric constants in the range of 4-8 (Fig 2A+B). We also note that the standard 

deviations (SD) obtained from the 25 replicas for individual ΔΔG measurements reduce as 𝜖!"# 

increases, with this effect again flattening out for 𝜖!"# values between 4-8 (Fig 2C+D and S1 and S2 

Figs). For example, the average SD reduces from 2.8 to 1.3 kcal mol−1 and 3.5 to 1.7 kcal mol−1 when  

𝜖!"# is increased from 1 to 4 for the 1G4 and A6 TCR systems, respectively. This data suggests that 

fewer replicas per variant may be required in order to obtain converged results when a higher 𝜖!"# value 

is used. Interestingly, for both test sets, the GB solvent model significantly outperforms the PB solvent 

model (at an 𝜖!"# of 1). This is perhaps surprising given that the GB solvent model is designed to 

reproduce the PB solvent model with an 𝜖!"# of 1.[41] 

It is challenging to provide a concrete answer as to the reason why increasing the 𝜖!"# can improve 

the quality of prediction, and why the 1G4 test set is more sensitive to this effect than the A6 test set. A 

recent MMPBSA study focused on predicting the correct binding pose for PPIs observed a weak 

relationship between the polar buried area (PBA) and the optimal 𝜖!"# to use.[37] Systems with 

increasing PBA were recommended higher 𝜖!"# values, and based on the PBA of the WT TCR-pHLA 

complexes studied here (1310 Å2 and 1250 Å2 for WT-1G4 and WT-A6 respectively, determined using 

the COCOMAPS webserver[42]) a 𝜖!"# of approximately 2-4 would be recommended. Further, several 

MMPBSA alanine scanning studies have found the use of 𝜖!"# values greater than 1 to greatly improve 

the quality of prediction for the exchange of charged residues.[16,43–46] To assess the possibility that 

the outliers observed in the MMPBSA calculations with an 𝜖!"# of 1 were induced by changes in the 

charge of the TCR, we colored variants in Fig 2C+D according to the total number of charged mutations 

made from the WT. The benefit that increasing 𝜖!"# has on charged variants is clear for both data sets, 

but particularly striking for the 1G4 test set, as several affinity-enhanced variants (with ΔΔG values < 

−6 kcal mol−1) are progressively reordered from some of the lowest affinity variants to some of the 

highest affinity variants.  
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For the 1G4 TCRs, three apparent outliers can be identified even at higher 𝜖!"# values or when using 

the GBSA approach (Fig 2C), and their negative impact is clear when comparing the prediction quality 

with and without the outliers included (Fig 2A). Analysis of the CDR loop sequences of these TCR 

variants (Fig 3A) shows 5 mutations are made in their CDR3α loop which are not present in any of the 

other variants studied here (see S4 Table for all sequences used). These differences in the CDR3α loop 

could therefore explain why these variants are outliers in the above data set. That is, these mutations 

may have notably altered the conformational dynamics/sampling of the loop (and/or neighboring 

regions), and this would likely not be accounted for by the short MD simulations (which start using the 

same backbone crystal structure as described in the Methods) performed here. Alternatively, there 

could be a significant change in the rigidity of the CDR3α-loop, such that the contribution from changes 

in solute entropy upon binding cannot be ignored for accurate ranking of these variants.  

For the A6 TCRs, 3 single point variants (Q30E and S100A/N on the TCR α-chain) were 

consistently underestimated (Fig 3D). Our 3D-RISM calculations on WT A6 (used to solvate the protein 

due to the lack of water molecules available in the X-ray structure, see Methods) predicted strong 

affinity bridging water molecule sites at both of the above mutation sites in the WT A6-TCR (Fig 

3B+C), with the 3D‐RISM distribution function (g(r)) for water oxygen atoms calculated to be > 10 

(note that the g(r) of bulk water is by definition 1). Further, both mutated side chains are predicted to 

make water-bridged hydrogen bonds with pHLA residues (Fig 3B+C). Specifically, HLA residues K66 

and T163 for Q30 and peptide residue P6 for S100). Taken together, our data suggests that the outlier 

mutations may be poorly described due to not explicitly describing key solvent meditated water bridged 

hydrogen bonds through the use of an implicit solvent model (PB or GB) in our calculations.  
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Fig 3. A potential rational for outliers identified in our MMPB/GBSA Calculations. A. Sequences of the 

CDR3α loop of the three 1G4 outliers, with positions mutated shown in bold. All 1G4 variant sequences 

are provided in S4 Table. B+C. WT A6 TCR-pHLA structure with the two outlier mutation sites S100 

(B) and Q30 (C) labelled. Predicted water sites (using 3D-RISM[47,48] and Placevent[49], see 

Methods) which form bridged water hydrogen bonds to pHLA residues are shown (here, all donor-

acceptor heavy atom distances are within 3 Å). The calculated water density distribution function g(r) is 

shown for the water molecules, demonstrating that they are all predicted to have a very high occupancy. 

 

Given the above observations, in the following sections we aimed to try to correct the outliers 

observed in both data sets and improve our overall prediction accuracy. We did this by (1) including 

explicit water molecules into our MMPB/GBSA calculations, and (2) introducing a correction for the 
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change in solute entropy. Further, we note that our primary aim is to identify an approach that is ideally 

suitable for all TCR-pHLA complexes. It is therefore important to assess whether the inclusion of 

explicit water molecules and entropic corrections could have a deleterious effect on the overall quality 

of prediction (i.e., through the introduction of an additional source of error and/or noise). 

 

Effect of Inclusion of Explicit Water Molecules.  

The inclusion of explicit water molecules has shown mixed success in the context of MMPB/GBSA 

calculations.[11,14,50–52] In the case of a small molecule ligand binding a protein receptor it is 

common practice to include the “X” closest water molecules to the ligand and retain these water 

molecules for the receptor calculation (as well as the complex calculation). In contrast, for a PPI, there 

are many possible ways to define which water molecules should be kept in the calculation and further, 

whether these waters are retained on the receptor or the ligand or some combination of both. Here, we 

took the X (where X is 10, 20, 30 or 50) closest waters to any oxygen or nitrogen atom on a selection of 

binding site residues located on the pHLA, and included these waters as part of the pHLA (i.e., receptor) 

calculation, as well as the complex calculation (see Methods for further details). We choose to keep all 

waters on the pHLA over a combination of the TCR and pHLA to ensure that all retained waters were 

close to a protein atom in both the bound and unbound MMPB/GBSA calculations. Given the results 

obtained for different solvent models and dielectric constants as described in Fig 2, we assessed the 

benefit of including explicit water molecules using both the MMGBSA and MMPBSA methods, setting 

𝜖!"# to 6 for the MMPBSA calculations (Fig 4).  

Focusing first on the 1G4 set of TCRs, a beneficial effect is observed when explicit water molecules 

are included in the MMPBSA calculation with 𝜖!"# set to 6 (Fig 4A+B). Improvements in the prediction 

quality are observed both including and excluding the previously described outliers. This additional 

benefit appears to be largely due to correctly ranking the highest affinity TCR variants (those with 

ΔΔGexp < −6 kcal mol−1). Further, most of the beneficial effect of including explicit water molecules is 
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observed after only 10 waters are included, with the improved prediction quality remaining fairly stable 

with increasing numbers of waters included. This observation of a lack of sensitivity to differing 

numbers of explicit waters is reassuring to note (as it is impossible to know the optimal number of 

waters to include a priori).  

Fig 4.  Impact of explicit water molecules on binding affinity predictions. A-D. Determined Spearman’s rank (rs) and 

Pearson’s R (rp) values for MMPB/GBSA calculations on the 1G4 (A+B) and A6 (C+D) test sets for different numbers of 

explicit water molecules included in the calculation. E+F. Exemplar scatter plots for the 1G4 (E) and A6 (F) test sets 

showing the impact of the inclusion of an increasing number of explicit water molecules when using the MMPBSA method 

with 𝜖!"# set to 6. Scatter points are colored according to the number of charged mutations made between the variant and the 

WT.  Complete scatter graphs for all results are provided in S3-S6 Figs. 
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In contrast to the MMPBSA calculations, the inclusion of explicit water does not significantly 

improve the correlations for the MMGBSA approach. It should be noted, however, that the inclusion of 

explicit solvent increases the standard deviation obtained for the individual affinity estimates (Fig 4E+F 

and S3 and S4 Figs). For both the MMPBSA and MMGBSA simulations of the 1G4 test set, this 

increased deviation is partially compensated for by sampling a larger range of affinities. For instance, 

the MMPBSA ΔΔGcalc values vary by up to 12.2 kcal mol−1 for calculations with no water as compared 

to up to 20.9 kcal mol−1 for calculations with 50 waters included (with the three outliers described above 

removed, the variations for no water or 50 waters are 9.5 and 20.9 kcal mol−1, respectively). In contrast, 

the range of ΔΔGcalc values obtained for the A6 TCRs does not change significantly with increasing 

numbers of waters (Fig 4F and S5 and S6 Figs), indicating that the impact of the increased standard 

deviations observed may be particularly detrimental to the prediction accuracy for the A6 test set (as this 

therefore implies increased noise in the dataset).  

As the A6 TCR data set consists primarily of single point mutations, whist the 1G4 set is composed 

entirely of multi-point variants, it is important to consider how significant the contribution of explicit 

water molecules is in describing the differences in affinity between variants (i.e., ΔΔG not ΔG). That is, 

mutations that do not (significantly) interrupt the solvation environment between the TCR and pHLA 

may not require explicit solvation in order to correctly rank their relative affinities, and instead the 

increased noise associated with the calculation may just worsen the prediction quality. One would 

expect single point mutations to significantly disrupt the water network less often than the multi-point 

mutants present in the 1G4 test set, which is consistent with our observations shown in Fig 4. Further, 

the A6 TCR model was solvated based on 3D-RISM calculations, as no crystallographic waters were 

resolved (due to the low resolution of the structure). This may therefore also provide a source of error, if 

any key binding site water molecules were incorrectly placed.   
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To try to identify how the binding site solvation environment may have changed for TCR-pHLA 

complexes with different TCR variants, we calculated the total average number of bridged water 

hydrogen bonds (Hbonds) as well as solute-solute Hbonds formed between the TCR and pHLA during 

our MD simulations (S7 Fig). Whilst in the A6 data set we do observe a notable decrease in the average 

number of bridged water Hbonds for the Q30E variant (one of the outliers described above) as 

compared to the WT, other variants show largely similar values, consistent with a largely unchanged 

binding site water network. We also note that the 1G4 outliers NY-33 and NY-33A have the largest 

number of solute-solute Hbonds (S7 Fig), approximately 3 more Hbonds than most of the rest of the 

1G4 test set. Our binding affinity calculations overestimate these outliers’ affinities (Figs 2 and 4, where 

no solute entropy correction term has yet been considered). This could suggest that enthalpy-entropy 

compensation is important for correctly ranking these outliers.[53] That is, with additional Hbonds 

between the TCR and pHLA, one may expect a more favorable binding enthalpy term, which could be 

offset to a large degree by a less favorable binding entropy term.  

 

Impact of Solute Entropy Corrections.  

We evaluated two different methods to determine the change in solute entropy (𝑇Δ𝑆). The first is a 

modified version of the normal mode analysis (NMA) approach. In this approach, snapshots from MD 

are subjected to energy minimization and vibrational frequency calculations to obtain an estimate of the 

configurational entropy for each state. This approach is often not used in MMPB/GBSA applications 

due to its sizable computational cost and the large standard deviations obtained, which can often worsen 

the prediction quality.[6,54] However, Kongsted and Ryde introduced a modified approach whereby 

NMA is performed on a truncated region around the binding site, with a “buffer” region of amino acids 

and water molecules fixed in place to stabilize the conformation of the structure (Fig 5).[55] This 

approach, referred to as truncated-NMA (Trunc-NMA) has been demonstrated to significantly reduce 
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the computing time associated with the calculations, as well as reducing the magnitude of the error 

values obtained.[55–57] Given that we did not expect entropy corrections to improve predictions for the 

A6 test set with (primarily) single point mutations, alongside the substantial computational cost of 

Trunc-NMA, we applied this approach on only the 1G4 set of TCRs.  

 

Fig 5. Illustration of the truncated-normal mode analysis (Trunc-NMA) method used to calculate a solute entropy correction 

for the 1G4 test set. Residues included in the Trunc-NMA calculations are colored in blue (TCR) or magenta (pHLA) if they 

are flexible in the NMA calculations or green if they are frozen (and therefore make up part of the buffer region). Residues 

colored in white are not included in the calculation (see Methods). The 1000 water molecules retained in the calculation are 

shown as transparent spheres.  

 

The second method evaluated in this manuscript is known as the interaction entropy[58] (Int-

Entropy) approach, which determines the solute contributions to −𝑇Δ𝑆 from the fluctuations in the 

change in the gas phase interaction energy (i.e., larger average fluctuations result in a larger value of 

−𝑇Δ𝑆, see Methods for further details). This approach has the advantage of not requiring additional 

simulations (as fluctuations of the gas phase interaction energy can be taken directly from the original 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2021. ; https://doi.org/10.1101/2021.06.21.449221doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.21.449221
http://creativecommons.org/licenses/by/4.0/


15 

 

MMPB/GBSA calculations) and has shown great promise as a correction for protein-ligand binding free 

energy calculations.[40,58–60]  

For both test sets, there is a clear reduction in the quality of prediction when the Int-Entropy 

corrections are applied (Fig 6). Analysis of individual scatter plots with and without this approach 

included (Fig 6B+D) illustrate that the Int-Entropy approach has a negative effect on the prediction 

accuracy. We note that the error bars plotted for calculations with the Int-Entropy approach do not 

include an estimate of the uncertainty of the Int-Entropy correction itself (as all frames are combined for 

a single estimate). Nevertheless, it is clear that the noise and/or error induced from the Int-Entropy 

approach has had an unfavorable impact on the prediction accuracy.  

 

Fig 6: Impact of Solute Entropy Corrections on our MMPB/GBSA Calculations. A. Spearman’s rank (rs, unhashed bars) 

and Pearson’s R (rp, hashed bars) values determined for MMPB/GBSA calculations on the 1G4 test set with 𝜖!"# set to 6. 

Results are presented using a variable number of waters without any entropy corrections included as well as with the Trunc-

NMA and Int-Entropy approaches. B. Exemplar scatter plots for the 1G4 test set with the PBSA approach (with 𝜖!"# set to 6) 

including 50 explicit water molecules. Panels compare no entropy corrections (left), with Int-Entropy corrections (middle) 
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and with Trunc-NMA corrections (right). C. Impact of the inclusion of the Int-Entropy correction to the A6 data set, with the 

rs and rp values colored as in A. All results are without any explicit water molecules included. D. Exemplar scatter plots for 

the A6 test set with the PBSA approach (with 𝜖!"# set to 6) and no explicit water molecules. Panels compare no entropy 

corrections (left), to with Int-Entropy corrections (right). More complete results, including comparing the effect of removing 

outliers, are provided in S9 Fig.  

 

Whilst the Int-Entropy has been successfully applied to several small-molecule MMPB/GBSA 

studies, its application to PPIs has proven more challenging.[61] This is largely a consequence of the 

large binding interfaces (TCR-pHLA buried surface areas tend to be ~2000-2500 Å2) which give rise to 

a correspondingly large amount of variance in the obtained per-frame interaction energies. Thus, 

without exhaustive sampling, this approach can lead to non-converged and abnormally high entropy 

corrections.[61] One solution to this problem is to perform MMPB/GBSA calculations using an 𝜖!"# 

value larger than the default of 1, which notably reduces the variance of the interaction energies 

obtained, ultimately leading to converged entropy estimates within reasonable simulation times.[16] We 

indeed observed this behavior with our Int-Entropy corrections for the different MMPBSA methods 

used in this study, in which only 𝜖!"# values between 2 and 8 showed gaussian-like distributions of the 

gas phase interaction energy (S8 Fig). Regardless, the error/noise associated with the calculation was 

observed to worsen the prediction accuracy for both test sets. We note that when the Int-Entropy method 

was first introduced by Duan et al., interaction energies were computed using 100,000 snapshots from a 

single 2 ns long simulation.[58] In contrast, here we extracted significantly fewer snapshots (7500 

frames taken from 25, 3 ns long replicas) and our snapshots were significantly less correlated with one 

another (frames were taken every 0.02 ps by Duan et al.[58] instead of every 10 ps here). Whilst some 

more recent attempts have successfully applied the Int-Entropy approach using notably fewer simulation 

frames than those used in the original study,[40,60,61] collecting a much larger number of frames to 
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assist with convergence would be significantly more resource intensive, both in terms of the additional 

MMPB/GBSA calculations needed and the additional storage requirements for the simulations.  

We performed Trunc-NMA calculations on only the 1G4 test set (Fig 6A+B and S9 Fig) and 

obtained no notable change in the prediction accuracy when applying the method to MMPB/GBSA 

calculations without explicit water molecules. However, the combination of the explicit waters and 

Trunc-NMA corrections gave rise to a better prediction quality both when including and excluding the 

aforementioned three outliers. We further note that the improved prediction accuracy associated with 

Trunc-NMA corrections is not sensitive to the number of explicit water molecules included in the 

MMPBSA calculation (Fig 6A; similar as observed without applying entropy corrections, Fig 4).  

Whilst we did not evaluate the non-truncated form of NMA, previous studies have clearly shown the 

beneficial effects of using a truncated system on both the errors obtained and computational 

efficiency.[55,56] Given the size of a standard TCR-pHLA complex (~800-900 residues), the Trunc-

NMA approach used here would be significantly more efficient than standard NMA.  For the 1G4 data 

set composed of many multi-point mutations, the combination of Trunc-NMA and explicit water 

molecules was beneficial, and we observed the prediction quality to be highly insensitive to the number 

of explicit water molecules included in the MMPBSA calculation.  

 

How many replicas are required for reproducible MMPB/GBSA calculations?  

The results presented so far have shown a clear benefit of the use of a 𝜖!"# value ≥ 4 for MMPBSA 

calculations, both in terms of improving the prediction quality and in reducing the magnitude of the 

errors obtained. Further, beneficial effects were also observed for the 1G4 test set when both explicit 

water molecules and entropy corrections were applied. However, these methods are likely to increase 

the noise associated with the predictions. It is therefore important to assess how many replicas may be 

required for reproducible results with the different approaches performed in this study. We used 
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‘bootstrapping’ to do this: a statistical method that involves “resampling with replacement”, meaning 

that from a set of N observables (in our case N is the 25 replicas performed for each complex) a large 

number of bootstrap “resamples” are constructed by randomly removing or duplicating the individual 

observations. These bootstrap resamples are then used to recalculate the correlation coefficients many 

times in order to obtain confidence intervals in the calculated correlation coefficients. For both test sets, 

we generated 1,000,000 bootstrap resamples of ΔΔGcalc for several different MMPB/GBSA protocols 

used here. We then evaluated the impact of using a reduced number of replicas on both Spearman’s rank 

(Fig 7) and Pearson’s R (S10 Fig) and their corresponding confidence intervals. We note that both types 

of correlation coefficient showed very similar behavior, so only Spearman’s rank (Fig 7) is discussed 

below.  

Fig 7:  Bootstrapping to assess the impact of using differing numbers of replicas to obtain Spearman’s Rank for some 

of the protocols evaluated in this study. Panels A+B focus on the GBSA and PBSA approaches with no explicit waters 

included. Panel C focusses on the PBSA method with 𝜖!"# set to 6. Panel D focusses on the PBSA method (𝜖!"# set to 6) with 

50 explicit waters molecules included with and without the Trunc-NMA correction applied. Measurements with the 1G4 and 

A6 test sets are colored black and red respectively. In each panel, the average of the 1 million bootstrap resamples are used to 

calculate Spearman’s Rank when using a differing number of replicas, with the error bars depicting the 95% confidence 
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intervals. The complete data is used in all cases (i.e., the outliers discussed above are included). Equivalent results with the 

Pearson’s R metric are provided in S10 Fig.  

 

Focusing first on the 1G4 test set (Fig 7A-D), there appears to be little benefit for performing more 

than 15 replicas for the MMGBSA approach, whilst for the MMPBSA simulations with 𝜖!"# set to 6, 

one could argue that as few as 5 replicas may be sufficient, considering the additional computing cost if 

more replicas are used. This is also true when explicit water molecules are included and/or Trunc-NMA 

entropy corrections applied: 5-10 replicas are sufficient to converge the prediction estimates. 

Comparison of the A6 and 1G4 test sets shows that the A6 test set is generally noisier for each 

comparable method (Fig 7A-C). This is likely in part due to the reduced experimental affinity range in 

the data set as well as the comparably lower quality of the WT crystal structure (resolutions of 1.9 Å vs 

2.6 Å for 1G4[62] and A6[63], respectively). For the A6 test set, a larger number of replicas may 

therefore be optimal as compared to the 1G4 TCR, in terms of the balance between accuracy and 

computing cost. Regardless, for both test sets a maximum of 15 replicas would appear to be sufficient 

when using the optimal parameters previously described.  

 

Conclusions 

This study evaluated MMPB/GBSA protocols for relative binding free energy prediction on two 

different sets of TCR-pHLA variants. The first test set (1G4) consists of 18 multi-point variants which 

contained between 3-14 mutations across up to 5 CDR loops, and spanned a large range of experimental 

affinities (~8 kcal mol−1).[26,31] In contrast, the second (A6) set of TCR variants consisted largely of 

single point mutations (25 of 29, with the four remaining variants having between 2-4 mutations), all 

located on the CDR3β loop.[29,32] The A6 variants in this set include those that both increase and 

decrease binding affinity relative to the WT (∆∆𝐺$%& values between +2.3 and −4.0 kcal mol−1). The 
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contrast between test sets was intentional, as we initially aimed to see if an accurate MMPB/GBSA 

protocol could be obtained that would be applicable for any set of TCR-pHLA variants. Although there 

is no single protocol that is highly suitable for both these sets, there are general lessons to be learned and 

specific recommendations for the application of MMPB/GBSA to TCR-pHLA complexes that can be 

made based on our results. 

First, for MMPBSA calculations of TCR-pHLA complexes, and indeed protein-protein complexes 

in general, an increased value (between 4-8) of 𝜖!"# is strongly recommended. This should not only 

improve the prediction quality but also reduce the uncertainties obtained, meaning fewer simulations 

need be performed per complex (arguably ~3-fold less; see Fig 7). Further, the use of a such an 

increased dielectric constant is likely to be particularly important for describing charge swapping 

mutations (Fig 2). Second, when deciding whether to include explicit water molecules or solute entropy 

corrections, we observed a clear divergence in the optimal protocol between our two test sets. For our 

data set composed of many multi-point mutants, inclusion of explicit water molecules (10 to 50) 

improved the prediction accuracy. In contrast, for our test set (A6) composed of single point (or very 

few) mutations, the additional errors/noise from adding explicit solvent resulted in a reduced prediction 

accuracy. Third, Int-Entropy corrections had a negative effect on the prediction quality for both test sets 

(likely in part due to the relatively small number of snapshots used). However, using the Trunc-NMA 

approach improved the prediction accuracy for the test set where variants had significantly altered H-

bonding across the interface, essentially resolving what were significant outliers. Notably, analysis of 

the total average number of hydrogen bonding contacts for different variants enabled identification of 

the main outliers in the data set, indicating that this could be used to “triage” potentially poorly 

described mutations for further investigation using Trunc-NMA calculations. 

Overall, we thus recommend the following for TCR-pHLA relative binding affinity prediction with 

MMPBSA: (1) Use an internal dielectric constant of ~6; (2) for TCR variants with multiple mutations, 
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include sufficient explicit water molecules to cover the interface. (3) Only when variants lead to a 

significant change in the TCR-pHLA Hydrogen bonding network, a truncated NMA based entropy 

correction should be applied. When computational efficiency is important, MMGBSA could be 

considered for TCR variants with few mutations. 

Finally, our bootstrapping analysis demonstrated that when using MMPBSA with an increased 

internal dielectric constant (4-8, as recommended above) as few as 5 replicas (20 ns MD in total) can be 

sufficient to obtain reproducible results. The inclusion of explicit water molecules or Trunc-NMA 

entropy corrections did not notably increase the number of replicas one would need to perform. Thus, in 

a practical context, one could envisage a scenario in which all candidate mutants are first subjected to an 

initial screen of 5 replicas, with promising variants taken forward for a total of 10-15 replicas for 

increased accuracy.  

Computational methods that allow for the accurate ranking of TCR-pHLA binding affinities and 

those of PPIs more generally have obvious utility in computational drug discovery. Whilst we intended 

to find a general approach, our results demonstrated the need for two somewhat different approaches for 

the accurate and reliable ranking of TCR-pHLA binding affinities, one for ranking TCR variants with 

multiple mutations (>4) from the starting point, and one with few mutations. We believe the 

MMPB/GBSA approach outlined here has promise as a medium throughput screening tool to select and 

rank candidate mutations for experimental testing.  

 

 

Methods  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2021. ; https://doi.org/10.1101/2021.06.21.449221doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.21.449221
http://creativecommons.org/licenses/by/4.0/


22 

 

Structure preparation.  

X-ray crystal structures of the TCR-pHLA complexes of wild-type (WT) 1G4 and WT A6 were 

taken from PDBs 2BNR[62] and 1AO7[63] respectively, with the missing residues in PDB 1AO7 

(located in the constant domain, away from the binding site) added in using PDB 4FTV,[32] which has 

an identical (but resolved) constant domain to 1AO7. All simulations of point variants were performed 

using the WT structure, with mutations inserted using PyMOL[64] (rotamers were selected based on 

recommendations from PyMOL v2.1, avoiding clashes as much as possible). Optimal His 

tautomerisation states and Asn and Gln side chain orientations were determined using MolProbity[65], 

with all residues simulated in their standard protonation states at pH 7 (consistent with PROPKA 

3.0[66] predictions). His tautomerisation states were kept consistent between the WT and any variant 

structure simulated (see S1 Table for tautomerisation states used). All structures were solvated in an 

octahedral water box such that no protein atom was within 10 Å of the box boundary, with the minimum 

number of either Na+ or Cl− ions added as required to ensure total system neutrality. The 1G4 TCRs 

were solvated retaining the WT crystal structure waters, with any crystal water molecule that clashed 

with a newly inserted side-chain removed.  For the A6 TCRs, the resolution of the WT structure (2.6 Å) 

is too low to identify (many) waters surrounding the binding site, so 3D-RISM[47,48] was used to 

calculate the radial distribution function (g(r)) of water surrounding the protein and the “Placevent” 

algorithm[49] was used to solvate the protein based on the obtained g(r) (see Supplementary 

Methods), prior to solvation in a octahedral box.    

Molecular Dynamics Simulations. Molecular dynamics (MD) simulations were performed using 

GPU accelerated Amber16, [67] with the ff14SB[68] force field and TIP3P water model were used to 

describe the protein and water molecules respectively. For each structure, a protocol of minimization, 

heating and equilibration (see Supplementary Methods) prior to production MD simulations in the 

NPT ensemble (298 K and 1 atm). For each structure, 25 replicas of 4 ns long were performed, with the 
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last 3 ns taken forward for MMPB/GBSA calculations. Simulations were performed with a 2 fs time 

step (with the SHAKE algorithm applied to all bonds containing hydrogen. The default 8 Å direct space 

non-bonded cut-off was applied with long range electrostatics evaluated using the particle mesh Ewald 

algorithm. Temperature and pressure regulation were performed using Langevin temperature control 

(collision frequency of 1 ps−1) and a Berendsen barostat (pressure relaxation time of 1 ps). Trajectory 

analysis was performed using CPPTRAJ.[69] Hydrogen bonds (both solute-solute and water bridged) 

were considered formed if the donor-acceptor distances were less than 3 Å and the donor-hydrogen-

acceptor angles were between 180±45°.  

MMPB/GBSA theory and methodology.  

The molecular mechanics generalized Born/Poisson–Boltzmann surface area (MMPB/GBSA) is an 

end state binding free energy calculation method which calculates the binding free energy (∆𝐺'!"() 

through the following equation: 

 ∆𝐺'!"( =	∆𝐸!"# + ∆𝐺&)* +	∆𝐺"&)* − 𝑇∆𝑆 (1) 

Where ∆𝐸!"# is the difference in the interaction energy, ∆𝐺&)* and ∆𝐺"&)* are the polar and non-polar 

contributions to the solvation free energy respectively, and ∆𝑆 is the change in solute entropy. ∆𝐸!"# can 

be obtained directly from the force field energy terms: 

 ∆𝐸!"# =	∆𝐸!"#$+",* +	∆𝐸$*$ +	∆𝐸-(. (2) 

Where ∆𝐸!"#$+",* is the difference in the internal energy terms (i.e., bonding, angle, dihedral and 

improper torsions) and ∆𝐸$*$ and ∆𝐸-(. are the electrostatic and Van der Waals (vdW) contributions. 

Note that in the single trajectory approach, which is used here, the contributions from ∆𝐸!"#$+",* cancel 

out. ∆𝐺&)* is obtained by solving either the Poisson Boltzmann (PB) or Generalized Born (GB) 

equations respectively. The non-polar contributions to the solvation free energy can be estimated from 

the solvent accessible surface area (SASA): 
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 ∆𝐺"&)* = 	𝛾	 × 𝑆𝐴𝑆𝐴 + 𝑏 (3) 

   Where 𝛾 is surface tension (set to 0.00542 kcal mol−1 Å−2) and 𝑏 is an offset (set to 0.92 kcal mol−1).    

Finally, 𝑇∆𝑆 is an optional correction that accounts for the change in solute entropy. In this study we 

tested two different methods in order to calculate this, which are discussed in the section “Solute 

Entropy Corrections”. 

For MMPB/GBSA calculations, frames were taken every 10 ps from the last 3 ns of each production 

MD simulation replica, meaning a total of 300 x 25 (number of replicas performed) frames were used 

for MMPB/GBSA calculations. Calculations were performed using the MPI version of MMPBSA.py[5], 

with the GB-Neck2[41] (i.e., igb=8) solvent model for GBSA calculations, and the default PB solvent 

model for MMPBSA calculations. MMPB/GBSA calculations were performed with an implicit salt 

concertation of 150 mM (to match experimental assay conditions).  

 

Solute Entropy Corrections.  

As discussed in the introduction, the MMPB/GBSA approach does not account for the rigidification 

of the solutes upon binding. We applied two different methods to predict a “correction” for this effect to 

the calculated binding free energies, using both the interaction entropy (Int-Entropy[58]) and the 

truncated normal mode analysis[55] (Trunc-NMA) methods.  

The Int-Entropy approach developed by Duan et al.[58] uses the fluctuation of the gas phase 

contributions to	∆𝐺'!"( (referred to as the interaction energy, ∆𝐸!"#) to provide an estimate of 𝑇∆𝑆. 

Equation 2 shows how to calculate ∆𝐸!"#. The per frame fluctuation of ∆𝐸!"# can then be determined 

by: 

 ∆𝐸/*01 =	∆𝐸!"# −		〈∆𝐸!"#〉 (4) 
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Where 〈∆𝐸!"#〉 is the ensemble average of ∆𝐸!"#. Finally, 𝑇∆𝑆 can be determined by:  

 −𝑇∆𝑆 = 𝑘2𝑇 ln〈𝑒3∆5$%&'〉	 (5) 

Where 𝛽 is 1 𝑘2𝑇⁄ . For each different MMPBSA or MMGBSA calculation, we took the ∆𝐸!"# values 

obtained from all 7500 frames per complex and used this to calculate −𝑇∆𝑆.   

Normal mode analysis (NMA) uses vibrational frequency calculations of energy minimized 

structures of each state to determine the change in solute rigidity upon ligand binding and can therefore 

be used to determine 𝑇∆𝑆 in Equation 1. To reduce the computational cost and noise associated with 

this approach, we used a modified version of this approach referred to as truncated-NMA (Trunc-

NMA).[55] In Trunc-NMA, only a subset of atoms located near the binding site are used for the entropy 

calculation. Residues located close to the binding site are treated as flexible (i.e., allowed to move and 

therefore contribute to a vibrational frequency calculation), whilst residues further away from the 

binding site are included in a “buffer zone” and held fixed throughout the minimization and vibrational 

frequency calculations. Further, water molecules that surround the binding site are also often included as 

part of the buffer region. In the Trunc-NMA approach used here (see Supplementary Methods for 

further details), we retained all receptor (pHLA) residues within ~16 Å of any ligand (TCR) residue and 

vice versa, using the WT crystal structure to determine distances. Any breakages introduced into the 

sequence were acetylated or amidated, using the coordinates from the first deleted residue. Those 

residues within the range 12-16 Å were kept frozen for both the optimization and vibrational frequency 

calculations. A shell of 1000 water molecules were also retained (and kept frozen throughout) around 

the binding site. For the frequency calculations of the free ligand or receptor, 500 water molecules were 

included for each structure. Energy minimization was performed using sander (Ambertools18[67]) with 

GB implicit solvent and performed until the RMSD was less than 10−6 kcal mol−1 Å−1. Frequency 

calculations were performed in vacuo using a modified version of the Nmode program (from Amber14), 

to allow use of the “ibelly” command, which allows for the freezing of atoms during the energy 
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minimization and vibrational frequency calculations. Frozen atoms therefore have no (direct) impact on 

the entropy estimates obtained. The Trunc-NMA approach was only applied to the 1G4 set of TCRs and 

was performed on frames taken every 100 ps from the last 3 ns of each of the 25 replicas (750 frames 

per complex). 

Assessment of the Quality of Prediction.  

Experimentally determined ∆∆𝐺’s (obtained from prior studies[26,29,31,32], see S2 and S3 Tables for 

affinities of all TCR-pHLA complexes studied) were compared to the computationally derived ∆∆𝐺’s 

and assessed using both the Pearson’s r (rp) value and Spearman’s rank (rs). These metrics were chosen 

as rp determines how linearly correlated the two data sets are, whilst rs assesses how monotonic the two 

data sets are (i.e., how well do the computational results correctly rank order the experimental results). 

Error values associated with individual ∆∆𝐺'!"( calculations are the standard deviation obtained from 

the 25 replicas performed per complex. Bootstrapping with random replacement was performed using 

the R software package. In all instances, 1 million bootstrap resamples were constructed from the 

original 25 replicas performed per complex. Each resample was then used to calculate Spearman’s rank 

and Pearson correlation coefficient r, with the average values and 95% confidence intervals determined 

for different numbers of replicas.  
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Supplementary methods 

WT A6-TCR Solvation. The 3D-Reference Interaction Site Model1,2 (3D-RISM) was used to predict the 

density distribution function (g(r)) for water oxygen atoms across the entire TCR-pHLA binding site of 

the WT A6 TCR-pHLA structure. For 3D-RISM calculations (performed with AmberTools18), the 

Kovalenko-Hirata (KH) closure method3,4 was used, with all other settings kept as default.  Following 

this, Placevent5 was used to solvate the entire TCR-pHLA complex, by solvating the entire complex with 

waters molecules up to 5 Å away from any protein atom. Multiple cut-off g(r) values (point at which 

additional waters with smaller g(r) values are no longer added) were tested as the default value of 1.5 Å 

resulted in stability issues (due to “vacuum bubbles”) during NPT simulations (due to too much space 

between solvent atoms in the initial structure). We found that appropriate solvation was achieved with a 

g(r) cut-off of 1.1 Å and following this we solvated the protein and these water molecules in a water box 

of size 7 Å (away from both any protein and 3D-RISM/Placevent water molecule). This distance of 7 Å 

was chosen as it gave a slightly bigger box size (in all dimensions) to the box size that would be generated 

when solvating just the protein in a 10 Å octahedral water box. (This value is likely to be somewhat system 

dependent.)  

Structure equilibration procedure. The following procedure was used to prepare all systems simulated for 

production MD simulations in the NPT ensemble at 298 K and 1 atm. All dynamics steps applied the 

SHAKE algorithm to constrain all bonds containing a hydrogen atom. Replica simulations were initiated 

from the second heating step of the following protocol (with each replica assigned different random 

velocity vectors at this stage). Simulations performed in the NVT ensemble used Langevin temperature 

control (with a collision frequency of 1 ps−1) and used a simulation timestep of 1 fs. Simulations performed 

in the NPT ensemble used Langevin temperature control (collision frequency of 1 ps−1) and a Berendsen 

barostat (1 ps pressure relaxation time). 

The equilibration protocol is as follows: First, hydrogens atoms and solvent molecules were energy 

minimized (using 500 steps of steepest descent followed by 500 steps of conjugate gradient minimization). 

To prevent the movement of non-hydrogen and non-solvent atoms during the minimization, 10 kcal mol−1 

Å−1 positional restraints were used to keep all heavy atoms fixed. Then the solvent was heated rapidly 

from 50 K to 298 K (NVT ensemble, 1 fs timestep) over the course of 200 ps, with the previously 

described restraints still maintained. The positional restraints were then replaced with 5 kcal mol−1 Å−1 

positional restraints on only the Cα carbon atoms of each residue and subjected to another round of energy 

minimization (500 steps of steepest descent followed by 500 steps of conjugate gradient). Retaining these 
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positional restraints, the system was heated from 25 K to 298 K over the course of 50 ps (NVT ensemble, 

1 fs time step). Simulations were then performed in the NPT ensemble (1 atm, 298 K, 2 fs time step) by 

first gradually reducing the 5 kcal mol−1 Å−1 Cα carbon restraints over the course of 50 ps. This was done 

by reducing the restraint weight by 1 kcal mol−1 Å−1 every 10 ps. A final 1 ns long NVT MD simulation 

with no restraints placed on the system was then performed, with the final structure produced after this 

run, used as the starting point for production MD simulations.  

Truncated Normal Mode Analysis. Truncated normal mode analysis calculations (Trunc-NMA) were 

performed only on the 1G4 TCR-pHLA complexes studied in this manuscript. Residues in the pHLA that 

were retained were HLA residues: 5-26, 33-47, 54-101, 112-118, 123-133, 139-174, and peptide residues: 

1-9. Residues in the TCR that were retained were TCRα-chain: 1-5, 23-36, 44-73, 89-105 and TCRβ-

chain: 1-4, 22-34, 42-75, 89-104. Residues that were restrained during energy minimization and 

vibrational frequency calculations were: HLA residues: 6, 8, 10, 15-16, 23, 25-26, 33-35, 47, 54, 85-88, 

93-94, 96, 98, 100-101, 112-113, 115, 117-118, 123, 125, 127-129, 139-141, 169 and172-174;  TCRα-

chain residues: 4-5, 23-24, 26, 35, 45-48, 60-65, 67, 67-73, 89-91, 105; and TCRβ-chain residues: 1, 3, 

22, 42-43, 59, 61-64, 74-75, 89-90, 104. The “closest” command in the Ambertools18 program 

CPPTRAJ6 was used to retain 1000 binding site water molecules in each frame. The 1000 closest water 

molecules (water position determined using the oxygen atom) to the Cα of any of central peptide residues 

(residues 4, 5, 6 and 7) were used for this closest water molecules calculation. We used a modified version 

of the Nmode program from AmberTools14, which allows for the use of the “ibelly” parameter which 

fixes selected atoms in place, meaning they have no (direct) contribution to the vibrational frequency 

calculation. The modified Nmode code (along with scripts to setup and analyse the obtained results) can 

be provided upon request to the corresponding authors.  

Inclusion of Explicit Water Molecules for MMPB/GBSA Calculations. MMPB/GBSA calculations performed 

with explicit solvent (either 10, 20, 30 or 50 water molecules) were selected for using the “closest” 

command with CPPTRAJ.6 Water molecules were included in the complex and receptor calculations, and 

receptor residues at the binding site were used to select the x closest water molecules. Specifically, for 

WT 1G4, HLA residues: 19, 62, 65-66, 68, 69, 71-73, 75, 76, 150, 151, 154, 155, 158, 159, 163, 167 and 

peptide residues: 4-8 were used. For WT A6, HLA residues: 62, 65, 66, 69, 72-73, 150, 155, 158, 163, 

166 and peptide residues: 1-7 were used. The x closest water oxygen atom distances to any nitrogen or 

oxygen atom on the defined receptor residues were then used. The following selection expression was 

used in CPPTRAJ: “(:receptor_residue_selection)&(@O*|@N*)”.  
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Supplementary figures 
 

 
S1 Fig. Computational versus experimental ∆∆𝑮 values obtained for the 1G4 set of TCRs. For each 

panel, the MMGB/PBSA methods used are indicated in the top right. The red line corresponds to a linear 

fit of all the data. The three variants colored in red correspond to the outliers (NY-6, NY-33 and NY-33A) 

discussed in the main text.  The Pearson’s r value (rp) and Spearman’s rank (rs) are provided for the full 

set of data (in black) and without the three identified outliers discussed in the main text (in red and in 

parenthesis).  
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S2 Fig. Computational versus experimental ∆∆𝑮 values obtained for the A6 set of TCRs. For each 

panel, the MMGB/PBSA methods used are indicated in the top right. The red line corresponds to a linear 

fit of all the data. The Pearson’s r value (rp) and Spearman’s rank (rs) for each method applied are provided 

for the full set of data (in black) and without the three identified outliers discussed in the main text (in red 

and in parenthesis).  
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S3 Fig. Computational versus experimental ∆∆𝑮 values obtained for the 1G4 set of TCRs using the 

MMGBSA method with different amounts of explicit waters included. The number of waters used for 

each calculation is stated in the top left corner of each plot. The red line corresponds to a linear fit of all 

the data. The three variants colored in red correspond to the outliers (NY-6, NY-33 and NY-33A) 

discussed in the main text. The Pearson’s r value (rp) and Spearman’s rank (rs) are provided for the full 

set of data (in black) and without the three identified outliers discussed in the main text (in red and in 

parenthesis). 
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S4 Fig. Computational versus experimental ∆∆𝑮 values obtained for the 1G4 set of TCRs using the 

MMPBSA method with the internal dielectric constant set to 6 and a varied number of waters 

included. The number of waters used for each calculation is stated in the top left corner of each plot. The 

red line corresponds to a linear fit of all the data. The three variants colored in red correspond to the 

outliers (NY-6, NY-33 and NY-33A) discussed in the main text.  The Pearson’s r value (rp) and 

Spearman’s rank (rs) are provided for the full set of data (in black) and without the three identified outliers 

discussed in the main text (in red and in parenthesis). 
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S5 Fig. Computational versus experimental ∆∆𝑮 values obtained for the A6 set of TCRs using the 

MMGBSA method and a variable amount of explicit water molecules. The number of waters used for 

each calculation is stated in the top left corner of each plot. The red line corresponds to a linear fit of all 

the data. The three variants colored in red correspond to the outliers (point mutants Q30E, S100A and 

S100N) discussed in the main text.  The Pearson’s r value (rp) and Spearman’s rank (rs) are provided for 

the full set of data (in black) and without the three identified outliers discussed in the main text (in red 

and in parenthesis). 
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S6 Fig. Computational versus experimental ∆∆𝑮 values obtained for the A6 set of TCRs using the 

MMPBSA method with the internal dielectric constant set to 6 and with a varied number of waters 

included. The number of waters used for each calculation is stated in the top left corner of each plot. The 

red line corresponds to a linear fit of all the data. The three variants colored in red correspond to the 

outliers (point mutants Q30E, S100A and S100N) discussed in the main text. The Pearson’s r value (rp) 

and Spearman’s rank (rs) are provided for the full set of data (in black) and without the three identified 

outliers discussed in the main text (in red and in parenthesis). 
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S7 Fig. Total average number of water bridged and solute-solute hydrogen bonds (Hbonds) formed 

between the TCR and pHLA for each TCR variant simulated. Results for both the 1G4 (A+B) and 

A6 (C+D) test sets are shown. Error bars are the standard deviation from the 25 replicas performed per 

complex. Water bridged Hbonds for the 1G4 and A6 TCRs are shown in panels A and C respectively, 

whilst solute-solute Hbonds are shown in panels B and D respectively. For the A6 TCRs (panels C+D), 

single point mutations preceded by the letter “β”, mean the mutation is located on the TCRβ chain (with 

all others therefore located on TCRα chain). A hydrogen bond is defined as having a donor-acceptor 

distance less than 3.5 Å, and a donor-hydrogen-acceptor angle within 180 ± 45°. For each graph, the TCR 

variants are ordered according to their affinity (highest affinity at the top, lowest affinity at the bottom). 
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S8 Fig. Histograms of the fluctuation of gas phase interaction energy. Histograms were obtained by 

solving Equation 5 in the main text for the WT-1G4 TCR-pHLA complex using the six different methods 

evaluated in this study (performed with no explicit water molecules included). The value in brackets 

corresponds to the entropy correction estimate i.e. −𝑇Δ𝑆 (in kcal mol−1) obtained from each method when 

using the interaction entropy (Int-Entropy) approach. 
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S9 Fig. Impact of entropy corrections to the 1G4 test set as determined by the Pearson’s R (rp) and 

Spearman’s rank (rs). The three panels in section (A) contain the results: No entropy corrections (left) 

with truncated normal mode analysis (Trunc-NMA) corrections (middle) and Interaction Entropy (Int-

Entropy) corrections with all data included (i.e. outliers described in the main text are included). The three 

panels in section (B) show the same data but with the three outliers described in the main text excluded 

from the calculations.  
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S10 Fig. Bootstrapping to assess the impact of the number of replicas on the Pearson’s R value for 

some of the protocols evaluated in this study. Panels A+B focus on the GBSA and PBSA approaches 

with no explicit waters included. Panel C focusses on the PBSA method with 𝜖!"# set to 6. Panel D 

focusses on the PBSA method (𝜖!"# set to 6) with 50 explicit waters molecules included with and without 

the Trunc-NMA correction applied. Measurements with the 1G4 and A6 test sets are colored black and 

red respectively. In each panel, 1 million bootstrap resamples are used to calculate Spearman’s Rank when 

using a differing number of replicas. Error bars shown are the 95% confidence intervals. The complete 

data is used in all cases (i.e. the outliers discussed above are included). Equivalent results for the 

Spearman’s rank metric are provided in the main text (Figure 7). 
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Supplementary tables 
 
Table S1. Histidine tautomerisation states used for 1G4 and A6 TCR-pHLA complex MD 

simulations.  

TCR-pHLA 
System HIDa Tautomers HIEb Tautomers 

1G4 

HLA: 3, 70, 74, 93, 114, 192, 
260. 

β2m: 51.  
Peptide: N/A.  
TCRα: N/A.  
TCRβ: 152.  

HLA: 145, 151, 188, 191, 197, 263. 
β2m: 13, 31, 84. 

Peptide: N/A. 
TCRα: 113. 

TCRβ: 28, 46, 135, 165, 205. 

A6 

HLA: 70, 74, 93, 114, 191. 
β2m: N/A. 

Peptide: N/A. 
TCRα: N/A. 
TCRβ: N/A. 

HLA: 3, 145, 151, 188, 192, 197, 260, 
263.  

β2m: 13, 31, 51, 84,  
Peptide: N/A 
TCRα: N/A 

TCRβ: 29, 47, 139, 156, 169, 209.  

Numbering is consistent with PDB ID 2BNR7 for 1G4 and PDB ID 1AO78 for A6 simulations. 

a HID corresponds to a histidine residue which is singly protonated on its Nδ1 nitrogen. 

b HIE corresponds to a histidine residue which is singly protonated on their Nε2 nitrogen. 
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Table S2. Experimental TCR-pHLA affinities for the 1G4 TCRs.  

TCR ID KD (nM) ΔGbind (kcal 
mol−1) 

ΔΔGbind (kcal 
mol−1) Reference 

Data set 1a 
WT 32,000 -6.14 0 Li et al.9 

6 8.4 -11.03 -4.89 Li et al.9 
33 180 -9.21 -3.07 Li et al.9 

33A 254 -9.01 -2.87 Li et al.9 
107 0.04 -14.20 -8.06 Li et al.9 
112 0.1 -13.65 -7.52 Li et al.9 
113 0.026 -14.45 -8.32 Li et al.9 
119 0.1 -13.65 -7.52 Li et al.9 
120 0.2 -13.24 -7.11 Li et al.9 
121 0.1 -13.65 -7.52 Li et al.9 
122 0.98 -12.30 -6.16 Li et al.9 

Data set 2a 
WT 15,000 -6.59 0 Dunn et al.10 

c49wt 255 -9.00 -2.42 Dunn et al.10 
c49c50 1 -12.29 -5.70 Dunn et al.10 
c52c50 2 -11.88 -5.29 Dunn et al.10 
c53c50 1 -12.29 -5.70 Dunn et al.10 
c55c50 4 -11.47 -4.88 Dunn et al.10 
c56c50 8 -11.06 -4.47 Dunn et al.10 
wtc50 100 -9.56 -2.97 Dunn et al.10 
wtc51 25 -10.38 -3.79 Dunn et al.10 

TCR IDs used correspond to the same as those in the original paper indicated. 

a For both different studies, ∆∆𝐺 values were determined using the WT affinity determined in the same 

study.   
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Table S3. Experimental TCR point mutation data with TCR-pHLA affinities for the A6 TCR series.  

TCR I.D. KD (nM) ΔGbind (kcal 
mol−1) 

ΔΔGbind (kcal 
mol−1) Reference 

Data set 1 (all single point mutations)a 
WT 3200 -7.50 0 Haidar et al.11 

(CDRα) S51M N.P.b N.P.b -0.37 Haidar et al.11 
(CDRα) S29A N.P.b N.P.b 0.33 Haidar et al.11 
(CDRα) S100Y N.P.b N.P.b 2.34 Haidar et al.11 
(CDRα) S100T N.P.b N.P.b -0.49 Haidar et al.11 
(CDRα) S100N N.P.b N.P.b 1.92 Haidar et al.11 
(CDRα) S100A N.P.b N.P.b -0.01 Haidar et al.11 
(CDRα) R27F N.P.b N.P.b -0.22 Haidar et al.11 
(CDRα) Q30N N.P.b N.P.b 0.73 Haidar et al.11 
(CDRα) Q30E N.P.b N.P.b 0.43 Haidar et al.11 
(CDRα) K68H N.P.b N.P.b 1.09 Haidar et al.11 
(CDRα) G28V N.P.b N.P.b 0.56 Haidar et al.11 
(CDRα) G28T N.P.b N.P.b -0.76 Haidar et al.11 
(CDRα) G28R N.P.b N.P.b 2.43 Haidar et al.11 
(CDRα) G28M N.P.b N.P.b -0.51 Haidar et al.11 
(CDRα) G28L N.P.b N.P.b -0.46 Haidar et al.11 
(CDRα) G28I N.P.b N.P.b -0.27 Haidar et al.11 
(CDRα) G28A N.P.b N.P.b 0.58 Haidar et al.11 
(CDRα) D26W N.P.b N.P.b -1.08 Haidar et al.11 
(CDRα) D26V N.P.b N.P.b 1.45 Haidar et al.11 
(CDRα) D26M N.P.b N.P.b 0.19 Haidar et al.11 
(CDRβ) R102Q N.P.b N.P.b 0.45 Haidar et al.11 
(CDRβ) I54R N.P.b N.P.b 1.28 Haidar et al.11 

(CDRβ) G101A N.P.b N.P.b -1.09 Haidar et al.11 
Data set 2a 

WT 3200 -7.50 0 Cole et al.12 
A6c134M 1900 -7.81 -0.31 Cole et al.12 
A6c134S 1800 -7.84 -0.34 Cole et al.12 

A6c134AE 9.4 -10.96 -3.46 Cole et al.12 
A6c134E 4.4 -11.41 -3.91 Cole et al.12 
A6c134R 8 -11.06 -3.55 Cole et al.12 
A6c134 4 -11.47 -3.96 Cole et al.12 

TCR IDs used correspond to the same as those in the original paper indicated. 

a For both different studies, ∆∆𝐺 values were determined using the WT affinity determined in the same 

study.  

b N.P. means not provided in the original publication (only ∆∆𝐺 values were provided).  
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Table S4. CDR Loop sequences for the 1G4 set of TCRs.  

TCR 
I.D. 

CDR2α 
50-54 

CDR3α 
94-103 

CDR2β 
50-53 

TCRβF3 
56-70 

CDR3β 
94-97 

WT IQSSQ PTSGGSYIPT GAGI QGEVPNGYNVSRSTT YVGN 
122 ISPWQ PLLDGTYIPT AIQT QGEVPNGYNVSRSTI YVGD 
121 ISPWQ PLLDGTYIPT AIQT QGEVPNGYNVSRSTI YVGN 
120 ITPWQ PLLDGTYIPT AIQT QGEVPNGYNVSRSTI YVGD 
119 ITPWQ PLLDGTYIPT AIQT QGEVPNGYNVSRSTI YVGN 
113 ITPWQ PLLDGTYIPT AIQT RGEVPNGYNVSRSTI YLGN 
112 ISPWQ PLLDGTYIPT AIQT RGEVPNGYNVSRSTI YLGN 
107 ISPWQ PFTGGGYIPT AIQT QGEVPNGYNVSRSTT YVGN 
6 IQSSQ HTSNGYFPPT GAGT RGEVPNGYNVSRSTI YLGN 
33 IQSSQ PYQSGHYMPT GAGT RGEVPNGYNVSRSTI YLGN 

33A IQSSQ PYQSGHYMPT GAGT QGEVPNGYNVSRSTI YLGN 
c49c50 IPFWQ PTSGGSYIPT SVGM QGEVPNGYNVSRSTT YVGN 
c49wt IPFWQ PTSGGSYIPT GAGI QGEVPNGYNVSRSTT YVGN 
c52c50 ISPWQ PTSGGSYIPT SVGM QGEVPNGYNVSRSTT YVGN 
c53c50 ITPWQ PTSGGSYIPT SVGM QGEVPNGYNVSRSTT YVGN 
c55c50 IMGHQ PTSGGSYIPT SVGM QGEVPNGYNVSRSTT YVGN 
c56c50 IMGTQ PTSGGSYIPT SVGM QGEVPNGYNVSRSTT YVGN 
wtc50 IQSSQ PTSGGSYIPT SVGM QGEVPNGYNVSRSTT YVGN 
wtc51 IQSSQ PTSGGSYIPT AIQT QGEVPNGYNVSRSTT YVGN 

WT positions subjected to mutagenesis are underlined. Mutations are colored in red and in bold. The 

unique extra proline mutation in the CDR3α of NY-6 alongside the different CDR3α loop sequence of 

NY-33 and NY-33A are highlighted in yellow.   
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